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1. INTRODUCTION

(i.i) Background

The topics of dynamic loading of gear teeth and the

deflections of gear teeth due to dynamic loads have been

treated extensively.

One such work, presented by Cornell and Westervelt [i],

utilizes an improved version of a model developed by Richardson

[4]. The model generates the dynamic loads for a meshing gear

using a cantilever beam with a cam moving along it, simulating

the engagement and disengagement of the adjacent tooth (see

Figure i-i). These dynamic loads are then used in a dynamic

model of meshing gear teeth where the two gear hubs act as

rigid inertia and the teeth as variable stiffness springs as

shown in Figure 1-2. Of significant importance in this

investigation is the claim made by the authors that the effect

of variable tooth stiffness is small, changing the dynamic load

response slightly compared to a system with constant tooth

stiffness.

Another dynamic load response algorithm was developed by

Wang and Cheng [2-3], where they reported that both the dynamic

load and the induced dynamic response are highly dependent on

the speed of the moving load. In slow speed regions, the dyna-

mic load response is composed of a static response which varies

with the stiffness of the tooth. Superimposed on the static is

an oscillatory response caused by the excitation of the system

at the resonant frequency. Wang states that as the speed of
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Figure i-i: Dynamic load model

Figure 1-2: Dynamic model of meshing gears
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the moving load increases and the resonant frequency of the

system is approached, the dynamic load response becomes so

abrupt that tooth separation occurs. A much smoother response

is generated when the speed of the moving load is increased and

becomes out of phase with the system resonance. Here the

peak response is reduced significantly and actually becomes

less than that for a static load. Examples of the dynamic load

variation obtained by Wang and Cheng are included in Figure

1-3.

Kasuba [5] presents an algorithm which analyzes spur

gearing under static and dynamic loading conditions. In his

analysis, the stiffness of the teeth are determined by solving

the statically indeterminant problem of multi-pair contacts,

changes in contact ratio, and meshing gear deflections, in

general, Kasuba states that to decrease the dynamic load

response, increased damping and/or contact ratio can be used.

He also noted that, in a general sense, high contact ratio

gears have lower dynamic loads than low contact ratio gears.

Up to now, the discussion of models developed to determine

the dynamic response of gear teeth has been limited to theore-

tical cases. Wallace [9] in his investigation, uses finite

element analysis in conjunction with experimental techniques to

study the deflection of gear teeth. He subjects a single

tooth to both Hertzian impact and general dynamic loads, hoping

to define a procedure for predicting deformation distributions

due to dynamic loads. The finite element method shows good

correlation with experimental results obtained using a short
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cantilever beam subjected to impact loadings at different posi-

tions.

Another important contribution to the subject of gear

dynamics was made by Atria [6]. He studied the effects of

including the rim when performing a static analysis to deter-

mine tooth spring constants. He concluded that the stiffness

of teeth with the rim included is significantly less compared

to a variable cross-section cantilever beam rigidly fixed to

the gear body. With the added flexibility, the initial con-

ditions of two meshing teeth are highly dependent on the

deflections of the two previously engaging teeth. This fact is

very significant, as it will definitely affect the type of load

experienced by the upcoming gear pair.

Many of the theoretical models used to predict the deflec-

tions of gear teeth, such as those presented by Cornell [i],

Wang [2-3] and Kasuba [5], make use of tooth stiffness

variations obtained from a static deflection analysis. The

equations of motion are expressed as functions of the load

position only.

Nagaya and Uematsu [7] state that because the contact

point moves along the involute, the dynamic load response

should be considered as a function of both the position and

speed of the moving load. In their analysis, they approximate

the deflections of actual gear teeth due to moving loads by

modelling the tooth as a tapered Timoshenko beam. They present

plots of normalized centerline deflections for different moving

load speeds, and claim that dynamic stiffness variations can be



derived from their results. However, as illustrated later,

this claim turns out to be false.

In order to make the theoretical developments of models

used to determine the dynamic response of gear teeth more prac-

tical, some assumptions are made. One such assumption made by

the first three authors presented, is that the mass of the gear

tooth compared to the gear body is small and can be neglected.

Literature gives no hints to whether this assumption has been

thoroughly investigated.

(1.2) Problem Statement

In this study, two basic problems are investigated. The

first phase is to determine whether the dynamic response of a

single spur gear tooth is dependent on the speed of a moving

load acting on the tooth.

The second phase is an investigation to determine the

significance of omitting the inertia of the gear tooth from the

dynamic deflection model due to the small mass relative to the

gear body.

(1.3) Scope of Work

A model based on involute geometry is developed to automa-

tically generate a spur gear tooth profile and finite element

mesh, including the rim, using a minimum of input parameters.

This model is then used to determine the effects of the speed

of a moving load on the deflection of a single gear tooth. Two

constraint configurations are tested; one where only the invo-

lute profile and fillet regions are allowed to deform, the



other with the entire rim included. The results are first

represented as normalized deflections of the tooth centerline.

Then the tooth tip deflection time histories are studied for

the entire load cycle.

The second phase of the work is to model a meshing gear

tooth pair using two cantilever beams attached to moveable

foundation masses. Relative displacements of the foundation

masses as well as beam deflections are determined for moving

load speeds bracketing the system resonant frequency.



2. MODELDEVELOPMENT

In order to effectively perform a static and dynamic ana-

lysis of spur gear teeth using finite element techniques, a

model is needed to automatically generate a tooth profile and

the accompanying finite element mesh for different size gear

teeth. Also, the geometry of the tooth should be defined using

a minimum of parameters corresponding to those most generally

specified when generating a tooth profile. One such list of

parameters is:

Pressure Angle

Pitch Radius

Addendum

Dedendum

Circular Pitch

Backlash

Fillet Radius

Rim Thickness

= %p

= RP

= AD

= DED

= CIRP

= BACKL

= RF

= RTH

With these parameters, the profile of any spur gear tooth can

be generated including the rim.

In the proceeding sections, the equations necessary to

construct the tooth profile using the preceeding parameters are

developed, including the implementation of these relationships

in a profile generation algorithm. The topic of finite element

mesh generation is also discussed, along with an overview of

the mesh generation algorithm used to generate the grid.



Later in this chapter, a brief discussion of the plane

strain finite element type used to model the gear is included.

Also, a general treatment of a linear quadrilateral element is

used to help develop equations describing the moving loads used

on the gear teeth. These relations are then implemented in a

moving load generation algorithm using idealized load time

history equations for a spur gear tooth.

(2.1) Profile Generation

The profile generation sequence is divided into three

sections; determining relationships, first for the involute,

then for the fillet, and finally for the rim.

(2.1.1) involute Generation

An involute curve is generated by unwrapping an inexten-

sible cord from a cylinder. Figure 2-1 illustrates that as the

c_rd is unwrapped from the cylinder, point B on the cord traces

an involute curve AC. The radius of curvature of the involute

varies continuously, being a zero at point A and increasing

towards C. At the instant shown, the radius is equal to BE, as

point E corresponds to the instantaneous center of rotation

about point B. When generating the involute of a spur gear

tooth, the cylinder from which the cord is unwrapped corresponds

to the base circle. This concept is further developed as shown

in Figure 2-2. Here the local coordinate system X-Y, fixed to

the hub at the base circle, is used to determine relative coor-

dinates along the involute. The parameters shown are; the base
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circle radius RB, the pitch circle radius RP, the roll angle

8_ and the pressure angle 8p. The pressure angle is defined

by drawing a line perpendicular to the base circle and passing

through the point P. This line corresponds to the pressure

line or line of action of forces between meshing gear teeth.

The point P being the pitch point. From the triangle OBPO, the

base circle radius is defined in terms of the pitch radius as:

RB = RPcosSp (2-1)

In order to generate discrete points along the involute,

8i is used in place of 8_ and allowed to vary from zero to a

maximum, 8max =_8i; i=i,2,3,...,n, corresponding to the desired

height of the involute, as shown in Figure 2-3. The maximum

value of 9, corresponding to the point B n on the tip of the

tooth, is found by writing the equation for the triangle

OAnBn0;

(RBSmax)2 + RB 2 = RO 2

Solving for e max gives;

RO2-RB2 ) ½8ma x = _-_
(rad) (2-2)

where RO is the outer radius defined as the sum of the pitch

radius and the addendum. Each increment of 0 i produces a point

on the involute progressively further from the base circle. In

terms of the local axis system, X-Y, the coordinates of the

points Bi are determined from the geometry shown in Figure

]2



Y

0

3i-I

Figure 2-3: Construction Of an involute curve

13



2-4. In simplified form the equations for the X and Y coor-

dinates are:

XB i = -RB(sinSi - 8icosSi)

YB i = RB(cosSi + 8isinSi - i)

(2-3)

(2-4)

where RBSi is the arc length from the origin of the X-Y system

to point A i.

Next, those equations defining the overall geometry or

size of the tooth are presented. From Figure 2-5, it can be

seen that;

from which;

(RBS_ )2 + RB 2 = Rp2

RB 2 ) ½ (rad)

Also from Figure 2-5, it is obvious that;

which can also be written as;

(2-5)

8p = tan-l(8_) (2-6)

where 8_ is expressed in radians. During the process of

calculating actual tooth dimensions, equation (2-6) serves as a

useful derivational check on 8_ • With e_ and 8P the angle

is written as the difference of the two previous angles;

¢= 8_ -Sp (2-7)

]4
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And finally, from Figure 2-5, u is found to be;

I P% C I RTH
= 8P -tan-l_8l_ + --_

1

(2-8)

where CIRTH is the circular thickness measured on the pitch

circle, given by;

CIRTH = CIRP - BACKL (2-9)
2

Since one leg of _ passes through the tooth center, this angle

is well suited for transforming the involute coordinates from

the X-Y axis system to a system whose Y axis passes through the

center of the tooth, such as Y' shown in Figure 2-6.

When analyzing a gear tooth to determine stresses, deflec-

tions, etc., it is very advantageous to make full use of the

axisymmetric properties of the tooth. The involute points

generated relative to the X-Y axis system are, therefore,

transformed into another system X'-Y', taking full advantage of

these properties.

Using the pitch point on one side of the tooth as a

reference, as seen in Figure 2-6, a vector 5' is drawn from the

pitch point, Bp, to the gear center, 0, which defines the ori-

gin of the X'-Y' coordinate system. The vector, 5', is com-

posed of two vectors, R and r;

r' = R + r (2-10)

where;

17
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= dj' + RBsinsi' (2-11)

with;

d = RBcose

and;

(2-12)

(x and y are the coordinates of point Bp calculated in terms of

X-Y using equations (2-3) and (2-4)).

In the new coordinate system, the coordinates of point Bp

are now defined as;

x, = RBsin_ + _cose + ysine (2-13)

Y' = d- xsine + ycosc_ (2-14)

Figure 2-7 illustrates more clearly the elements comprising

equations (2-13) and (2-14).

In the profile generation algorithm, included in Appendix

i, eleven points are calculated along the involute. Equations

(2-2), (2-3), (2-4), (2-5), (2-8), (2-13), and (2-14) are used

directly to calculate the point coordinates in the X'-Y' axis

system.

(2.1.2) Fillet Generation

In the present work,

geometries are considered;

two different spur gear tooth

low contact ratio gearing (LCRG)

and high contact ratio gearing (HCRG). By definition, the con-

tact ratio is the length of the path of contact of mating gears

]g
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divided by the base pitch. More practically• it can be thought

of as the average number of teeth in contact during the meshing

cycle. A high contact ratio gear is one which has at least two

teeth in contact at all times.

One of the main differences between the two forms (LCRG and

HCRG) is the fillet transition (see Figure 2-8). For an actual

low contact ratio gear, the fillet radius is pladed tangent to

the involute and the root circle as shown in Figure 2-8a. The

amount of overlap of the involute may be different for any

given tooth design, in the current model• however• the fillet

radius is calculated to fit tangent to the involute at the base

circle =-_ _--_-_ _ _ho _ _i_ _ _h_. _. _ m_o_

case (see Figure 2-8b).

When designing the high contact ratio gears, the fillet

region is undercut to provide additional clearance for the

engaging teeth. Also, the HCRG tooth is generally longer due

to addendum or other profile modifications• thus the radial

distance between the base and root circles is also extended as

shown in Figure (2-8c).

Given the gear parameters defined for a particular gear,

the following equation can be used to determine whether the

gear is a low or high contact ratio gear [i0].

RR 2 + 2RF RR > RB 2 (2-15)

In equation (2-15) RF is the fillet radius specified for a

given tooth. If this inequality is satisfied, the tooth is

2]
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classified as LCRG. This means that the specified fillet radius

will overlap the involute, and thus must be changed to fit the

modified form as described in Figure 2-8b.

Figure 2-9a illustrates the geometry used in developing

the LCRG fillet radius relations. From Figure 2-9a it is

obvious that the fillet radius needed to make the transition

from the base circle to the root circle will have to be larger

than the radial distance DD as shown. The equation of the

given triangle is;

(RF + RR) 2 = (RR + DD) 2 + RF 2 (2-16)

__ .............. rearranging terms, equation (2-16) can be

written for RF as;

2RR DD + DD 2

RF = 2RR (2-17)

This then gives the equation of the fillet radius which will

fit tangent to the involute at the base circle, and tangent to

the root circle.

Rewriting equation (2-15) with the inequality reversed

gives the equation defining a HCRG. For HCRG the transition is

RR 2 + 2 RF RR < RB 2 (2-18)

divided between a radial line tangent to the involute and a

fillet radius from the end of the tangent line to the root

circle (see Figure 2-8c). Instead of calculating a new fillet

radius, as done for LCRG, equation (2-16) is used, along with

23
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the specified fillet radius, to calculate the length of the

radial line DR (see Figure 2-9b). Rewritten in another form,

equation (2-16) becomes;

DD 2 + 2RR DD - 2RF RR = 0 (2-19)

and can be used to determine the radial distance DD spanned by

the fillet radius. Using the positive root of the quadratic

equation (2-19) for DD yields;

DD=
-2RR+ (4RR 2 + 8RF RR) ½

2 (2-20)

DD is then subtracted from the difference between the base and

root radii to give the length of the radial tangent line.

DR = (RB - RR) - DD (2-21)

When programming the preceeding equations to calculate the

fillet coordinates, eight equally spaced points are used. For

LCRG, the arc AOB is divided up into eight equal angles, 8i

(see Figure 2-10a). Coordinates of successive points are

calculated by adding 8i's together for i=i,2...,8 until the

arc from A to B is generated. The coordinates of B i in Figure

2-10b are found from;

XBi = XA - RFcos8

YBi = YA - RFsin8

For HCRG, the radial distance required for the fillet

radius, and the radial distance of the tangent line may vary

25
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from one gear design to another. To insure equal point

spacing, integer arithmetic is used to weight the number of

points between the radial portion and the fillet radius

according to their respective sizes. This is done to facili-

tate the finite element mesh generation routine discussed

later. As in the involute profile generation scheme, the

points for the fillet are calculated in the X-Y coordinate

system, and then transformed to the X'-Y' system.

(2.1.3) Rim Generation

With the involute and fillet defined, the rim is then

generated. As stated previously, the fillet radius is placed

such that it is tangent to the root circle for both LCRG and

HCRG. From this tangent point, the rim of the gear is added by

drawing an arc on the root circle. The distance the arc is

extended on either side of the gear is approximately equal to

the circular thickness of the gear as shown in Figure 2-11.

The angle ADA is determined from;

sin-I XP+C IRTH % XP
• _-_ . - sin-l(_-_)ADA (2-22)

This angle is then divided into six equal segments and the

coordinates of points on the rim are calculated using a method

similar to that shown in Figure 2-10. From the last point on

the root circle, coordinates for a radial line extending inward

a distance equal to the specified rim thickness RTH are calcu-

lated. To complete the tooth profile, coordinate points on the

inner portion of the rim are calculated using a technique simi-

lar to that used for the outer rim.

27
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(2.2) Finite Element Mesh Generation

No absolutely correct method has been found to model a

system using a finite element mesh, even though the topic of

mesh development has been treated quite extensively. With dif-

ferent element types and solution techniques, several equally

valid methods are available for any particular application.

Indeed, Cook [14] states that although an optimum mesh can

be determined by requiring that element boundaries follow lines

of constant strain, this optimum condition only exists for

one set of loading conditions. As the load changes, so does

the optimum mesh configuration, and for problems involving

other than static loading, the difficulties are compounded.

However, when developing a mesh, simple guidelines can be

followed which will produce a well enough refined mesh to

obtain more than satisfactory results. To mention a few; ele-

ment boundaries should be aligned with structural or geometric

boundaries and principal load trajectories, elemen% aspect

ratios should be kept low (less than 7), and when different

element sizes are used transitions between different size ele-

ments must be gradual (mesh grading).

The finite element mesh generation algorithm used for this

analysis was developed in accordance with the preceeding rules,

as well as maintaining computational efficiency. Figures 2-12

and 2-13 show the nodes and elements, respectively, for a low

contact ratio gear, and Figures 2-14 and 2-15 illustrate the

high contact ratio geometry and also the varying rim thickness.

The grid consists of 319 nodes and 276 quadrilateral ele-

29
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ments. Ten equally divided vertical rows are used to form the

involute portion of the gear (elements 1-100). Nodes on the

surface of the involute correspond to the actual coordinate

points calculated in the profile generation routine. Close to

the surface of the involute, the element spacing is small pro-

viding additional stiffness for the application of the load.

Towards the center of the tooth the element spacing is greater

where less stiffness is needed.

The transition from the end of the involute to the root

circle is accomplished using one of the two techniques

described in section (2.1.2). For both LCRG and HCRG, eight

equally spaced rows of elements are used for the transition,

again using the actual coordinate points calculated in the pro-

file generation section as surface nodes. When using the HCRG

transition, with the radial line and fillet radius, the eight

surface nodes are divided between the two sections keeping

nodal spacing as even as possible.

In order to maintain continuity between different gear

geometry finite element meshes, elements 1 through 204 remain

the same size relative to the actual tooth sizes. In other

words, no changes are made in the grid geometry during the

generation of a particular gear model. The exception to this

rule is that elements 205 through 276 do vary in size depending

on the rim thickness. Figures 2-14 and 2-15 show this variation.

The algorithm containing the equations developed for the

profile geometry, as well as those relationships used to create

the finite element mesh is included in Appendix i.
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(2.3) Element Description

(2.3.1) Planar Elements

Two element types are considered for this analysis; plane

strain and plane stress. Due to the geometry and loading con-

ditions of the tooth, it is modelled as a plane elastic problem.

A plane body is a region of uniform thickness contained within

two parallel planes. When the thickness of the body is large

compared to the lateral dimensions, the problem is considered to

be plane strain. If the thickness is small, it is considered to

be plane stress. The difference between plane strain and plane

stress elements is evidenced in the material property matrices.

the material property matrix for theFor isotropic materials,

case of plane strain is;

E(l-.)
[a]: (1+.)(I-2.)

l _I(I-_) o ]
_/(l-_) l o

0 0 (1 -2V.)/2(1-V.)

When plane stress exists

°1" o
0 0 (1-.)/2

where E=30.E6 is the elastic modulus and _ =0.3 is Poisson's

ratio. The matrix multiplication factor is larger for plane

strain than for plane stress.

plane strain:

E(I-.)

(1+_)(I-2_)
= 4. 0385E7
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plane stress: E - 3.2967E7

The matrix elements are also larger (except for element 3,3) for

plane strain. When combined with the strain displacement rela-

tions to form the stiffness matrix, these differences result in

an increase in the stiffness for plane strain compared to plane

stress.

The thickness of the tooth used in the analysis is 0.25

inches. Comparatively, the largest and smallest planar dimen-

sions on the actual tooth (not including the rim) are 0.224 and

0.081 inches, respectively. Based on the dimensions it is dif-

ficult to make a judgement on the correct element type for this

analysis.

Figure 2-16 shows representative static deflection curves

for the plane strain and plane stress element types. The addi-

tional stiffness of the plane strain element is noted. Since the

difference in deflections between the two element types is small,

the plane strain element type is chosen for this analysis.

(2.3.2) General Element Description

The plane strain element described earlier can be repre-

sented by a linear quadrilateral element similar to that shown

in Figure 2-17a. The intersection of the lines which bisect

the sides of the element form a normalized coordinate system

_n , where;

_ x =y
b _ a
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Between element corners, _ and n vary from -I to +i. The

displacements within the elements can be written in terms of

the shape functions for each node, Ni, Nj, Nk and N1 as;

U = UiNi(x,y) + UjNj(x,y) + UkNk(x,y) + UINI(x,y) (2-23)

where Ui, Uj, etc. define the magnitudes of the displacements.

If all nodal displacements are zero except for the coefficient

of Ni(x,y), which is defined as unity, the displacement from

node i to the other nodes will decrease from unity to zero.

Using the parameters shown in Figure 2-17b the shape function

for node i going from i to j is;

Ni(x,y) = (_) (2-24)

where L is the length between Modes i and j in the direction

of _.

(2.3.3) Moving Loads

An arbitrary load, P( _, t ), normal to _ is introduced

whose components are; Px(_,t), Py(_,t) (see Figure 2-17b_ The

effect of the force P(_,t) on node i can be represented by the

integral of the load times the shape function and thickness

in the direction of from 0 to L. Component wise;

L

"Fx i
= At J Px(_,t) Ni(x(_), y(_))d_ (2-25)

0
T.

Fy i = At _Py(_,t) Ni(x(_), y(_))d_ (2-26)
.J

0
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where; At is the element thickness (assumed to be unity).

Inserting the shape function for node i into equations (2-25)

and (2-26) yields;

L

Fxi -- f Px(E,t) (_)dE (2-27)
0

Fy i = _PY(E,t) (_)d_ (2-28)

0

Equations (2-27) and (2-28) give the load history at node i as

a function of E(t), resulting from the arbitrary load P(E,t).

Conversely, the load history at node j is determined by

considering the shape function obtained when going from node

j to i with j at zero and i at unity. Here the shape function

starts at zero and increases to unity as;

E (2-29)
Nj(x,y) - L

Substituting equation (2-29) into equations (2-25) and (2-26)

yields the force in the x and y directions experienced at node

j, resulting from P(E,t).

L

Fx i = f Px(E,t) (_)d E (2-30)

0 L

Fy i = fPy(_,t) (_)dE (2-31)

0

Equations (2-27), (2-28), (2-30) and (2-31) can be used to

represent a moving load by introducing the Dirac Delta

Function. When used in an integral, it translates a given

function to the origin and gives the value of a function at a

given time at the origin. The argument of the delta function
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takes the form of the variation in the position variable. For

a moving load with constant velocity, the change in position

is given by the velocity times the time. The arbitrary moving

load then takes the form;

P(_,t) -- P(t)6(_-Vot)

where Vo is the velocity and t the time. Using the delta

function in the integrand results in all occurences of being

replaced by Vot. Thus, the four force equations become;

Fx i = Px(t) (L-V--_9_ (2-32)
L "

Fyi = pyct) (2-33)
L

Vot
FxJ = Px(t) (--_-) (2-34)

Vot
FyJ = Py(t) (--_--) (2-35)

Plotting these equations as a function of time where the magni-

tude of P(t) is constant, yields to general force histories

(see Figure 2-18) for a load moving from i to j.

Pm0x

F i

O

Pmox

FJ

_ 0

f= L,/Vo

NODE I NODE d

t: l-//VO

Figure 2-18: Linear force histories
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For an actual meshing gear set, the speed of the moving

load on a single tooth is not constant, but varies linearly

with time. The time varying speed can be seen to be (see

Appendix 2);

V(t) = RB _2t

Now, the force equations take a different form with 8 being

replaced by the displacement resulting from the above velocity;

RB_2t
S(t) - 2

where A can replace the quantity RB_2/2;

S(t) = At 2

For the time varying load the force equations then become;

L-At 2
Fi = P(t) ( L ) (2-36)

At 2
FJ = P(t) (-_---) (2-37)

where the x and y subscripts are assumed.
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3. DISCUSSION OF NAGAYA ANALYSIS

Although the problem of theoretically analyzing dynamic

gear tooth deflections has been treated extensively [1-5][10],

models addressing the problem assume that the variation in

tooth stiffness can be approximated using a static deflection

analysis. These models assume that the gear hubs act as rigid

bodies and that the teeth act as variable stiffness springs.

The stiffness of the teeth varies with the contact position

along the tooth and is generally arrived at using a static

deflection analysis such as the one developed by Weber [12].

Recently, K. Nagaya and S. Uematsu [7] proposed that since the

contact point moves along the tooth during the meshing cycle,

the dynamic load response should be considered as a function of

both the position and the speed of the moving load. In their

paper they generate plots of normalized gear tooth centerline

deflection curves from which they claim the equivalent spring

constant of gear teeth can be determined.

(3.1) Approximating A Gear Tooth with a Timoshenko Beam

In Nagaya's analysis, the differential equations for a

tapered Timoshenko beam are written and solved, in the form of

an eigenvalue problem, from which a modal response analysis is

used to determine tooth deflections due to moving loads.

Nagaya assumed a load of constant magnitude moving along the

beam at a constant velocity from the tip to the base of the

tooth (see Figure 3-1).

Using Kara's [8] assumption for the profile of gear
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teeth, Nagaya claimed that the deflections obtained using the

beam approximation were applicable to any spur gear defined by

the parameters

Pressure Angle = 20 °

L - L1 = 2.25 m

Ho = 2.48 m

LI/L = .34

S = (AoL2/Io)_ -- 4.76

where m is the module, L, LI, Ho are shown in Figure 3-1, and S

is the slenderness ratio. The module, m, is the pitch diameter

divided by the number of teeth, measured in inches. When ana-

lyzing a gear tooth the above parameters are used to describe

the Timoshenko beam used for the approximation. An example of

such a comparison is shown in Figure 3-2 where the approxi-

mating Timoshenko beam is shown superimposed onto the gear

tooth used in the finite element analysis of Chapter 4.

Instead of the beam lying tangent to the involute of the actual

test gear as shown, it should have passed through the tip of

the involute as illustrated by the inset figure. The inset is

a correct representation of Kara's assumption for the profile

of spur gear teeth. This discrepancy, is solely attributable

to the use of backlash when defining the gear geometry.

Backlash effectively decreases the width of the tooth. In

order to better compare the finite element analysis to Nagaya's

work, the tooth, when analyzed, is constrained so that only the

45



MODEL DEVELOPEMENT

I
I

A
/\

I \
/ \

/ \
/ \

/ \
/ \

I
I

#

/

I

%

\I\\\

\

Figure 3-2: Karas' assumption for

profile of gear teeth

46

^

i \
I \

I



portion void of interior elements is allowed to deform (see

Figure 3-2). The foundation and rim are constrained against

motion. Later on, the deflection of the gear tooth is again

analyzed with the tooth, foundation, and rim allowed to deform.

(3.2) Interpretation of Nagaya Results

When presenting his findings, Nagaya plotted normalized

tooth centerline deflections versus normalized load position

for different moving load speeds. Figure 3-3, taken directly

from reference [7], illustrates these results. The solid cur-

ves in the figure represent normalized tooth centerline deflec-

tions, each one for a different normalized velocity, V*. The

vertical arrows labelled T represent the load position relative

to the length of the tooth, where X/L is the ratio of the posi-

tion of the load on the tooth relative to the total length L.

The dotted lines are the static curves obtained from the Karas

analysis. By normalizing these parameters; deflection, load

position, and velocity, the results then become applicable to

any size gear tooth.

Non-dimensional deflections can be represented by;

where

W* = AoEW/PL

Ao = Area of the base of the tooth (in 2)

E = Elastic modulus (Psi)

W = Actual tooth deflection in

direction of applied load (in)

P = Applied load (ibs)

L = Extended tooth length (in)
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The velocity in normalized form is written as;

where;

V* = V/

V = Speed of moving load (in/sec)

E = Elastic modulus (Psi)

p = Material density (ib/in 3)

In this equation the denominator represents the wave velocity

in bars. Finally, the position of the moving load is given by;

where;

T = Vt/(L-LI)

V = Speed of the moving load (in/sec)

t = Elapsed time (sec)

(L-L1) = Actual tooth height (in)

From the plots shown in Figure 3-3, Nagaya claims that the

deflections of gearteeth, subjected to moving loads, vary with

the speed of the moving load. That is, for the same values of

T, the displacements are directly related to the speed of the

load. He states that for slowly moving loads, the dynamic

response reduces to the case of a step function impact load for

small values of T (see T=0.1, V*=0.001 in Figure 3--3). Since

Figure 3-3 indicates that the dynamic response is dependent on

the moving load speed (due to effects of inertia forces of the

mass of the tooth), Nagaya states that the stiffness of the

tooth must also depend on the moving loadspeed, he then

claims that the varying tooth stiffnesses can be determined
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from these plots. However, as later demonstrated, Nagaya's

claim that the response, and therefore the stiffness, is depen-

dent on the speed of the moving load is a false one.

A major portion of the present work is directed towards

substantiation of this conclusion.
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4. FINITE ELEMENT ANALYSIS

The deflections of single spur gear teeth with moving

loads acting on them are determined using finite element analy-

sis. A single gear tooth is used for six different moving load

cases. First, the same moving load scheme used by Nagaya [7]

(constant magnitude and speed) is applied to the tooth, which

is constrained according to the Timoshenko beam approximation.

Then the loa_ application on the tip of the tooth is changed

slightly and the test repeated on the tooth with the same

constraints. The two preceeding load cases are then applied to

a tooth allowing the entire model to deform, including the rim.

Finally, an idealized load function, with variable load magni-

tude and speed, is applied to the tooth using both constraint

cases.

(4.1)

at random.

gear are;

Description of Test Gear

The gear used as the model for this analysis was selected

The parameters used to define the geometry of the

8p = Pressure angle

RP = Pitch radius

AD = Addendum

DED = Dedendum

CIRP = Circular pitch

BACKL = Backlash

RF = Fillet radius

= 20 °

= 1.75 (in)

= 0.125 (in)

= 0.175 (in)

= 0.3927 (in)

= 0.01 (in)

= 0.05 (in)
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RTH = Rim thickness = _.6 (in)

At = Tooth thickness = 0.25 (in)

Figure 4-1 shows the finite element model of the tooth.

The test gear is a low contact ratio gear (contact ratio =

1.74).

(4.2) Determination of Normalized Plotting Parameters

and Their Application to the Gear Tooth

As stated previously, the normalized deflections of the

gear tooth are calculated using those parameters specified in

Kara's assumption for the profile of gear teeth. Thus, when

the deflections are plotted, the only term in the normalized

deflection equation taken directly from the gear analysis is

the deflection of the tooth centerline in the direction of the

applied load which is perpendicular to the centerline of the

tooth.

In Chapter 3.1 the equations needed to define the tooth

profile approximation, according to Karas, are given. The phy-

sical dimensions, length, area, etc. are defined in terms of

the module, m. For a standard spur gear the module is defined

as the pitch diameter per tooth measured in inches, and is

usually represented by the inverse of the diametral pitch;

Module = M = I/DP (in) (4-1)

where the diametral pitch is;

diametral pitch = DP = _ =
CIRP

= 8 (4-2)
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To further define the test gear, the number of teeth can be

calculated from;

number of teeth = N = 2RP,DP = 2(1.75)(8) = 28 (4-3)

Given either the diametral pitch or the number of teeth, the

module can easily be obtained.

m= 0.125 (in)

Using the value for the module and the relations of Chapter

3.1, the dimensions of the approximating Timoshenko beam are

determined. The height of the corresponding beam becomes;

(L-L1) = 2.25m = 0.28125 (in) (4-4)

and the extended length;

-L-L1

L = (0--_) = 0.42614 (in)

At the base, the beam thickness is;

(4-5)

Ho = 2.48m = 0.31 (in)

and thus the area at the base;

Ao = HoAt = (0.31)(0.25) = 0.775 (in) (4-6)

Given the above parameters, the non-dimensional deflections can

be plotted using;

W* = AoEW/PL (4-7)

Again, it should be emphasized that although the beam approxi-

mation (shown in Figure 3-2)'does not match the tooth exactly,
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the dimensions just determined in equations (4-5) and (4-6) are

still used in the normalized deflection equation when plotting

results for the actual tooth.

Nagaya defines the normalized velocity of the moving load

to be;

V* = V/E_-_p (4-8)

and plots four speeds corresponding to V* equal to; 0.01,

0.005, 0.003, and 0.001. Using equation (4-8), the actual

velocities, V, are;

I V* I V(in/sec)1

0.01

0.005

0.003

0.001

2025

1012

607

203

Table 4-1: Actual Velocities

When the load moves along the involute at a constant speed, the

values shown in the preceeding table are used directly.

However, for a meshing gear set, the velocity along the invo-

lute changes from zero to a maximum velocity, Vmax, according

to equation (A2-6). When the speed of the moving load is

modelled using this relation, the maximum velocity is defined

to be the velocity given in Table 4-1. Therefore, the speed

starts at zero and increases to a maximum speed corresponding

to those given in the table. By choosing the previously deter-

mined velocities of Table (4-1) to occur at the base circle
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where the velocity is maximum, the RPM of the gear for each

non-dimensional velocity can be determined. From equations

(A2-6) and (A2-7) the load cycle time for a meshing tooth can

be shown to be;

TF = 2S/Vma x (4-9)

where S is the distance along the involute from the tip to the

base circle, and Vma x is the velocity at the base circle.

Equation (A2-6) can then be used to calculate the angular velo-

city of the gear;

Vmax
OMEGA = T_ (rad/sec) (4-10)

For each non-dimensional velocity, load cycle times, TF, and

the RPM's of the test gear are found to be;

V* Vma x (in/sec) TF(sec) RPM

0.001

0.005

0.003

0.001

2025

1012

607

203

.2436E-3

.4875E-3

.8127E-3

.2436E-2

21470

10730

6435

2147

Table 4-2: Variable Velocity Parameters

To reiterate, the times TF included in Table 4-2 are those for

which the velocity starts at zero at the tip and increases

linearly to a maximum value, Vma x. For a load moving with

constant velocity, the time for the load to move over the

involute is simply the distance, S, divided by the velocity.

Returning now to the non-dimensional parameters plotted by
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Nagaya, for a constant speed moving load the position of the

load along the involute is given by;

Vt (4-11)
T =L_--CLT

where T varies from 0.0 at the tip, to 1.0 at the root circle.

A value T=0.8 correponds to a point near the base circle

radius between nodes ii0 and 121 (see Figure 2-12). Equation

(4-11) is valid only for constant speeds, V.

(4.3) Description of Dynamic Loading Cases

The dynamic deflections of single spur gear teeth are

generated using three loading cases; a constant speed constant

magnitude load with impact engagement, a constant speed

constant magnitude load using a finite load engagement rise

time (for these two loading cases the load is applied normal

to the tooth centerline), and a load with varying speed and

magnitude. In this last case the load is applied normal to

the involute.

The first of these three loading cases is designed to imi-

tate exactly the forcing function used by Nagaya. At time

equal to zero, a load of i000 ibs, simulating an impact load,

is applied to the tip of the tooth, and maintained until the

end of the load cycle (i.e. from the tip to the base circle).

(Whenever the terms "impact loading" are used, the author is

describing a step function). To simulate this loading con-

dition for the finite element analysis, time functions repre-

senting nodal load histories are calculated for each node on
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the involute. For the load moving between nodes i and j, the

force histories are described by equations (2-36) and (2-37);

F i = P(t) (L_t)

FJ = P(t) (_)

(4-12)

(4-13)

where; L is the distance between nodes, V is the velocity of

the moving load, and t the time. With several load value data

points defined along the involute, the finite element code uses

these points and linearly interpolates between them to define

the time functions. The time functions for this loading case

are shown in Figure 4-2. In Figure 4-2 the node numbers

correspond to the first eleven nodes on the right involute sur-

face of the tooth.

To determine the effect of impact load engagement, another

test is run using a finite rise time for the load on the first

node. Instead of the load applied all at once at time equal to

zero, it starts at zero and gradually increases to the maximum

Here the magnitude of the load is zerovalue (see Figure 4-3).

Pmax k
\

\
\

0.0 PER

8
PER

2

Figure 4-3: Finite rise time
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at t equal to 0.0 and goes up to 3/4 of Pmax by PER/8. The

rise time is defined as a fixed fraction (PER/8) of the time

function period. As the speed of the moving load increases,

the rise time decreases. Therefore, the rise time for V*=0.001

is ten times greater than for V*=0.01. The time functions for

this loading case are shown in Figure 4-4. Only the first time

function is different between Figures 4-2 and 4-4.

The last loading case tested is one in which the speed

and the magnitude of the load vary with time. Wallace and

Seireg [9] give idealized relationships for the magnitude of

the load on a gear tooth as a function of time and the contact

ratio. They are;

_t
P(t) = ½ Pmax(l-cos(e-_)) for: 0.0 <t<_TF

P(t) = Pmax for: eTF<t<(I-_)TF (4-14)

P(t) = ½ Pmax(l-cos(_(TF-t))) for: (1-s)TF <t<TF
eTF

where; TF is the load cycle time, t is the time along the invo-

lute, and u is a factor dependent on the contact ratio. A

value of 0.28 for _ is used, corresponding to a contact ratio

of 1.56. The force history described by equations (4-14) is

plotted in Figure 4-5. By applying equations (2-36) and (2-37)

with the load replaced by equations (4-14), the time functions

generated for this loading case are like those shown in Figure

4-6. Note that the time function period decreases as the load

moves down the involute due to increasing speed.

Equation (4-12) and (4-13), along with equation (4-14) are
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used in a time function generation algorithm which is included

in Appendix i.

(4.4) Finite Element Test Results

The results contained in the proceeding sections were

obtained using the SAP6 finite element code, implemented on the

UNIVAC 1100/80 computer facility at Michigan Technological

University.

(4.4.1) Comparison of Static Results

As a preliminary check on the accuracy of the finite ele-

ment analysis technique applied to gear teeth, static-

deflections obtained using finite elements are compared to

those calculated by Nagaya using Kara's assumption for the pro-

file of gear teeth. Comparisons are made with and without the

rim included in the analysis. Figure 4-7 shows the plots of

the normalized centerline deflections obtained using Timoshenko

beam constraints. The dashed lines are the static deflections

calculated by Nagaya. From the figure it is apparent that the

Timoshenko beam (used to produce the dashed lines) is stiffer

than the tooth. Going back to Figure 3-2, it is seen that the

beam is considerably larger than the tooth, especially towards

the base. Thus one would expect the beam to be stiffer. As

the load is applied closer to the base of the tooth the dif-

ference between the static deflection curves becomes less

exaggerated. For T=0.8 the centerline of the tooth actually

deflects less than the beam. The reasons for this are not

completely clear. One possible explanation, however, is the
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fact that as the load is applied closer to the base, the amount

of local deformation around the point of load application

increases due to increased nodal spacing. This causes the

tooth centerline to deform around the local deformation, thus

decreasing the overall deflection of the gear tooth. (Appendix

3 includes the actual tooth in the statically deformed con-

dition, illustrating the increase in local deformation). In

these figures, the compatibility of the element is not

violated. The deformation scale factor causes element overlap.

With the rim included in the analysis, the centerline

deflections are considerably more severe (see Figure 4-8).

The curves obtained by Nagaya, represented by the dashed line,

are exactly those pictured on Figure 4-7. The purpose of this

set of plots (Figure 4-8) is to emphasize the added flexibility

afforded by the rim material. (Appendix 3 also contains the

tooth in the deflected state with the rim included).

(4.4.2) Modal Analysis - Determination of Mode Shapes and

Natural Frequencies

In Nagaya's paper, the differential equation for the non-

dimensional deflection, W*, is derived and then solved numeri-

cally. The solution to the differential equation (eigenvalue

problem) includes an infinite number of natural frequencies

(eigenvalues) and an infinite number of mode shapes

(eigenvectors). However, he included only the first three

eigensolutions in the dynamic response analysis. It should

also be mentioned that the differential formulation is done for

transverse vibration so only bending modes are included.
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For the present analysis the mode shapes and natural fre-

quencies are determined from the finite element model by

solving the general equation;

([K] - I[M]){D} = 0 for I= _2

for pairs of I and {D}. These results are then used in a modal

response analysis to determine the response of the tooth to the

moving loads. For this analysis ten modes are included, with

both transverse and axial vibration. Appendix 3 includes the

first few mode shapes and natural frequencies of the tooth for

both constraint cases. Again, note the difference in flexibi-

lity between the two models (with and without the rim).

The first three natural frequencies from Nagaya's work

are compared with those found for the actual tooth. Both

bending and axial modes are included in the finite element

analysis, so the first three bending modes from this analysis

are used for comparison (modes 1,3,4) (see Table 4-3).

NAGAYA FEM

Mode FREQ (rad/sec)

1.092E6

3.764E6

9.488E6

Mode FREQ (rad/sec)

5.718E5

1.436E6

2.650E6

Table 4-3 Comparison of Modal Results

As expected, the natural frequencies of the beam approximation

are somewhat higher than those of the tooth (beam constraints),
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partly due to the additional material toward the base of the

beam.

(4.4.3) Dynamic Deflections: Timoshenko Beam Constraints

(4.4.3.1) Impact Loading

Shown in Figures 4-9a and 4-9b are the normalized cen-

terline deflections obtained using the impact engagement

loading case (see Figure 4-2). Results are obtained for load

positions of T=0.1,0.2,...,0.8. Each solid line represents

the non-dimensional centerline deflection;

W* = AoEW/PL

due to the applied moving load. Remember also that the deflec-

tions are plotted as a function of position;

Vt
T =L---_

and not as a function of time. So for T=0.1 the soiid lines

show the normalized centerline deflections for the different

speeds with the load one tenth the distance between the tip and

the root. Remember also that the time for the load to move

from T=0 to T=0.1 is different for all velocities, V*. The

dashed lines correspond to the static deflections obtained for

the tooth with the load in the position shown.

Initial examination of these plots suggests that the

displacements are indeed dependent on the speed of the moving

load. For slow speeds and low values of T (V*=0.001, T=0.1),

the deflection is approximately twice the static as Nagaya
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claimed. However, these plots do not give an accurate descrip-

tion of the dynamic deflections.

A much more representative picture is obtained when the

actual deflection of the tooth tip is examined over the load

cycle using small sampling intervals, ( T=0.001 for V*=0.01).

Figure 4-10 shows the true time history of the tooth tip as the

load moves from the tip to the base of the tooth. Instead of

the tooth being in a particular deformed state at load position

T, dependent completely on the speed, it actually oscillates

about a datum with constant amplitude and frequency. By

assuming that the tip oscillates about the static position, the

amplitude of oscillation is approximately twice the static, and

is initiated by the impact load at the beginning of the load

cycle. The only effect the speed of the moving load has is to

change the number of oscillations per load cycle. Recall that

the time for the load to move from T=0.1 to T=0.8 is ten times

greater for V*=0.001 than for V*=0.01. Therefore, approxima-

tely ten times more oscillations occur for the slower of the

two speeds.

From Figures 4-9 and 4-10 we can then conclude that the

deflections of the tooth do not depend so much on the speed of

the moving load, but on the tooth position at the instant the

deflection sample is taken. By roughly lining up the position

and deflection on the tip deflection curves, the position of

the tip of the tooth shown in Figures 4-9a and b can easily be

duplicated.

The datum about which the tooth oscillates is determined
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by repeating the previous analysis with the system critically

damped. The transient caused by the impact load is then

"filtered" out with only the steady state response remaining.

Figure 4-11 shows the non-dimensional centerline deflections

for all four moving load speeds. From the figure it is

apparent that all centerline deflections lay over the static

curve. To verify this claim, the tooth tip deflection

histories are again plotted. In Figure 4-12 the plots show the

tip following the static curve.

(4.4.3.2) Finite Engagement Rise Time Loading

In this test the tooth is subjected to the moving load

conditions illustrated in Figure 4-4 where the load on the

first node is gradually applied over a time of PER/8. This

loading case produces significantly different results compared

to the impact load test. (Since the normalized centerline

deflection curves do not accurately represent the dynamic

deflection phenomenon, they are not included). Figure 4-13

gives the tooth tip deflection history for this loading con-

dition. The tooth still oscillates about the static position

with constant frequency, but the amplitude varies significantly

with speed. The reason for this change, from the previous load

case, is best explained by again considering the load engage-

ment rise time.

In Chapter 4.3, Figure 4-3, the rise time is defined as a

fixed fraction of the time function nodal period (PER/8). For

V*=0.01, the rise time is ten times less than for V*=0.001.
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It should then be obvious, that as the speed of the load

increases, the time function for the first node begins to

approximate the step function impact load of Figure 4-2.

Examination of the deflection amplitude for V*=0.01 of Figure

4-13 shows it to be nearly the same as V*=0.01 of Figure 4-10.

(4.4.3.3) Wallace - Seireg Loading

For this loading case (time function shown in Figure 4-6)

both the speed and magnitude of the load vary with time. With

a contact ratio of 1.56, the load doesn't reach the maximum

value of 1000 ibs until it is between the second and third

nodes. Since the magnitude increases smoothly and gradually,

no abrupt load changes are encountered.

The tooth tip deflection history curves for this loading

case are included in Figure 4-14. Due to the nature of the

speed variation, the deflections are plotted as a function of

time instead of position as done previously. Here it can be

seen that the tip of the tooth follows the static deflection

curve for each of the speeds. This is again due to the slow

and gradual engagement of the load.

(4.4.4) Dynamic Deflections: Rim Included

Including the rim adds flexibility to the system as

already mentioned. The tooth tip deflection history for the

impact loading case, shown in Figure 4-15, illustrates this

fact. As before, the amplitude and frequency of vibration are

the same for each of the four speeds. However, compared to the

beam constraint case of Figure 4-10, the amplitude is con-
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siderably larger and the frequency slower.

When the finite engagement rise time loading case is used

the same general results are noted as before. That is, as the

speed of the moving load increases, the rise time approaches

impact conditions for V*=0.01 (see Figure 4-16).

Application of the Wallace-Seireg load history equations

to the rim constraint case produces results which behave

exactly as before. In Figure 4-17 the tip of the tooth

deflects in proportion to the magnitude of £he applied load.

The oscillations about the static curve are evident but do not

contribute significantly to the overall response.
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• DETERMINING THE EFFECTS OF INERTIA ON THE

DYNAMIC RESPONSE OF MESHING GEAR TEETH

In most theoretical models developed to determine the

dynamic response of meshing gear teeth [1-5 ], the mass

(inertia) of the tooth is neglected in the analysis• This

simplification is based on the claim that the mass of the tooth

is small compared to the mass of the hub.

To determine the effect of the inertia of the tooth on the

dynamic response of a meshing gear pair, a simplified model of

two cantilever beams attached to foundation masses is used.

The system analyzed is illustrated in Figure 5-1.

P

massless --_
ball

position 2

position 1

Figure 5-1: Meshing cantilever beams

Two cantilever beams with identical geometric and material pro-

perties are rigidly fixed to two foundation masses, M1 and M2.

In this analysis, the masses of the foundations are defined to

be the same. The two beams are held together by opposing for-

ces, P, acting on the masses M1 and M2. A massless ball acts

as the contact point between the beams and moves along the
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beams at a prescribed speed. As the contact point moves from

position 1 to position 2 at a velocity V, the change in stiff-

ness of the beams causes the masses to oscillate in the direc-

tion of P at the system resonant frequency. To simplify the

problem, movement only in the direction of P is allowed.

The dynamic response of the meshing cantilever beams is

determined for two loading cases; one where the beams are

assumed massless, the other where the masses of the beams are

included. The system is analyzed using constant and variable

speed moving loads of constant magnitude. Both impact and

smooth load engagement responses are examined by changing the

initial conditions of the system. These loading cases are ana-

lyzed using two values for the foundation masses of i.0 and

1.0E-4 ibs.

(5.1) Analysis Using Massless Beams

Figure 5-2 shows the system used when the beams are

assumed massless. As the contact point, represented by a

Ii

F --e-----

XI

Figure 5-2: S

---F

/_f/ i //

zstem parameters
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massless ball, moves along the beams, the deflection of the

beams will change due to the variation in stiffness. The

stiffness of each beam varies with the local coordinate, _ .

Since the beams are massless, they do not affect the system

resonant frequency, but follow the oscillations of M1 and M2

exactly. To determine the dynamic response for the massless
i

beam configuration, the differential equations of motion are

written and solved for this system.

(5.1.1) Equations of Motion

The equations of motion for this system are determined by

first considering each beam-mass configuration as a free body

(see Figure 5-3). Writing Newton's Second Law as the sum of

• |
I

I ,

I

I
I

|

F _ i

XI

Figure 5-3: Free body diagrams

the forces acting on each body we have;

M1 X1 = F - P

M2 X2 = -F + P

body 1 (5-1)

body 3 (5-2)

(Here it is assumed that X1 and X2 define the positive displa-

cement direction). Dividing. through by the coefficient of the
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second derivative term,

yields;

and subtracting (5-1) from (5-2)

1 1
1 +i___) + p(_+_) (5-3)_2 - _i =-F(_

To further simplify equation (5-3), the right hand side is com-

bined and a common denominator is determined. This gives;

MIW__2 - _i = (P-F)--=_ (5-4)MIMZ

where;

i 1 _ilM2 1 i) M_I_L2_+_=_ (_+ =_--_

Making simple substitutions, equation (5-4) can then be written

as;

MX = P-F (5-5)

where;

and;

MIM2
M---_

MI+M2

= _2-_1

From beam theory, the static deflections of each beam at

the point of contact of the load, are given by;

3 3

F_ 1 F_ 2

61 = 3E--_ ; 62 = 3-_-

as illustrated in Figure 5-4.

(5-6)

Equations (5-6) are written in
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Figure 5-4: Beam deflection configuration

terms of the beam stiffness as;

F F
61 = _-[ ; 62 = _ (5-7)

where;
3EI 3EI

KI- ; K2-
_l 3 _?

represent the stiffnesses of the beams.

As the load moves along between the beams, the varying

stiffness causes M1 and M2 to oscillate at the resonant fre-

quency of the system. To insure constant contact between the

beams while the masses are vibrating, the following rela-

tionship, termed the constraint equation, must be satisfied;

x2 - Xl = 61 + 62 (5-8)

where 61 and 62 assume orientations as shown in Figure 5-4.

Substituting equations (5-7) into (5-8) gives the constraint

equation in terms of the beam stiffnesses as;
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F F
X2 - Xl -- _ + K'_ (5-9)

Combining the right hand terms in equation (5-9),

KI+K2
X2 - Xl = F( KIK2 )

multiplying through by

KIK2
K =

KI+K2

and letting X=X2-Xl, yields a familiar form of the constraint

equation, describing the deflection of a spring;

F = KX (5-10)

Inserting...... P from_...=_"=_"-u.-_-v..,¢_In_,j._, into equation (5-5) gives the

equation of motion for the massless beam system;

MX + KX = P (5-11)

where;

MIM2
S--

KIK2
K =

KI+K2

Initially, the system deflection is determined by assuming that

static equilibrium is satisfied. Thus, at time equal to zero,

the initial deflection is the applied load divided by the total

stiffness (the combined deflections of the beams);
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X(0) = X2(0)-XI(0) = P/K

With the initial deflections, equation (5-11) is solved

using a fourth order Runge-Kutta integration algorithm. Since

the Runge-Kutta algorithm used is designed for systems of first

order equations, the second order differential equation (5-11)

must be converted to first order. This is done by defining;

Y1 = X and Y2 = X

Substituting these relations into (5-11), we then have;

MY1 + KY2 = P (5-12)

where at t=0.0,

YI(0) = 0.0

Y2(0) = P/K

Given these initial values, the relations;

Y1 = (P-KY2)/M

are used as input for Runge-Kutta and integrated to determine

the displacement, X=X2-Xl during the load cycle. (See Appendix

7 for solution algorithm).

(5.1.2) Static Analysis

Before any dynamic analysis is performed, a static

deflection test is done to provide a reference for dynamic

deflection comparisons. Solving the relationship;
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X2 - X1 = P/K

at different load positions produced the plots shown in Figure

5-5. The three blocks represent the components comprising the

constraint equation (5-8). Deflections are determined between

load positions 1 and 2 illustrated in Figure 5-6. The load

position is measured relative to beam 1 as labelled on the

abscissa of Figure 5-5.

(5.1.3) Dynamic Response Results

The dynamic response of the massless beam system is deter-

mined for two loading cases; a constant speed 1000 ib load, and

a variable speed i000 Ib load. For each of these loading

¢a_es, two sets of initial conditions are considered; those

defined for static equilibrium in equation (5-11), and another

set where the initial deflection, X2 - Xl, is equal to zero.

The second of these initial conditions will cause the load P to

be experienced as an impact load since the beams initially will

have no deflection and will attempt to return to static

equilibrium.

For loads moving with constant speed, speeds of; 1.0, 5.0,

I0.0, 20.0, and 40.0 inches per second are used. This range of

speeds is chosen in order to bracket the cycle period asso-

ciated with the fundamental frequency of the system. The fre-

quency of vibration of the system is constantly changing with

the position of the load. However, a representative fundamen-

tal frequency is calculated when the load is halfway through

the load cycle. At this position the beam stiffnesses are
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equal. Then, we simply have a spring mass system whose

undamped natural frequency is defined as;

1 (cycle/sec)= 2_

With beam dimensions the same as those given in Figure 5-6 and

the masses M1 and M2 equal to 1.0, the period of oscillation is

approximately 0.03 seconds. Thus for a constant velocity of

7.0 in/sec, approximately two oscillations will occur during the

load cycle.

When a variable speed moving load is used, the speed ini-

tially is zero and increases linearly to 1.0, 5.0, 10.0, 20.0,

and 40.0 in/sec at the end of the cycle.

(5.1.3.1) Constant Speed Moving Loads

For slowly moving loads, relative to the fundamental

period of the system, one would expect near static deflections.

This is the case for a speed of 1.0 in/sec as shown in Figure

5-7. The figure gives the components of the constraint

equation resulting from an initial deflection equal to the

ratio of the load and stiffness. The only deviations from the

static deflection curve are caused by small oscillations at

the resonant frequency. As the speed of the moving load

increases, one would expect an increase in the amplitude of

oscillation as the period of the load cycle approaches the

resonant period. Increasing to 5.0 in/sec produced larger

deviations from static due to increased oscillation amplitudes

(Figure 5-8). This trend continues until the deflection is
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maximum for a speed of 20.0 in/sec. (See Figure 5-9 and 5-10).

In both Figures 5-9 and 5-10, the value of X2-Xl goes negative.

This means that the beams have separated. Notice also that the

system at 20 in/sec, does not even begin to approach the ini-

tial conditions at the end of the cycle, as for the slower

speeds. A further increase in speed to 40.0 in/sec, shows that

although the beams themselves deflect appreciably (DELTA1 and

DELTA2), the masses themselves are displaced very little

because the load cycle is much shorter than the resonant period

(see Figure 5-11).

In each case, the system strives toward the static deflec-

tion position. But due to the _nertia of the foundation

masses, this position may or may not be maintained depending on

the speed of the moving load.

As discovered in the finite element analysis (see section

4.4.3), the type of load engagement significantly affects the

response of the undamped gear tooth. This is also the case for

the meshing beams configuration. By changing the initial con-

ditions of X=X2-Xl to zero, the system reacts to restore itself

to static equilibrium. Since the system is undamped, a high

amplitude oscillation is set up due to the rapid movement of

the foundation masses. This is best illustrated by examining

Figure 5-12 where the components of the constraint equation

are plotted for a velocity of 1.0 in/sec. As before, the

system oscillates about the static deflection position, but

with very large amplitude. Note also, thatseparation occurs

during each oscillation. The same phenomenon occurs for
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speeds of 5.0 and i0 in/sec (Figure 5-13 and 5-14). However,

with a further increase in speed, the system does not have suf-

ficient time to react and the oscillations become less signifi-

cant (see Figure 5-15 and 5-16). One should not be led to

believe that the separation occuring for these initial con-

ditions is caused by the characteristics of the system. It is

caused, however, by the application of a 1000 ib load to a beam

which in the physical sense could not support it. However,

since the system behaves linearly, the characteristics of the

response are the same for whatever load is applied, and the

1000 ib load is used simply to exaggerate that response.

(5.1.3.2) Variable Speed Moving Loads

Introducing a variable speed moving load, versus constant

speed, has little effect on the general behavior of the meshing

massless cantilever beam system. The same conclusions can be

drawn concerning the dynamic resonse trends due to increased

moving load speed. As a reference, the dynamic response curves

for both sets of initial conditions and the five different

speeds, plotted as a function of position, are included in

Appendix 4.

(5.2) Analysis Including Beam Inertia

Figure 5-17 illustrates the physical system used to deter-

mine the effects of including the inertia of thebeams on the

dynamic response due to moving loads. This system is exactly

the same as the one used in Section 5.1 except the mass of the

beams is included. First, the equations of motion for this

system are developed.
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F .q_-----

XI

Figure 5-17 System parameters

(5.2.1) Equations of Motion

The equations of motion for this system are somewhat more

difficult than those developed for the massless beam con-

figuration. Instead of writing down the differential equation

directly, a form of Lagange's Equation is used which takes into

account the added mass of the beams.

The Lagrange Equation of motion, utilizing Lagrange

multipliers is;

d ( 8__L) _L m
d-_ _qi - 8-_ = Qi + 7. Ikaki

k=l •

for: i = 1,2,...,n (5-13)

where;
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aki =

L = T - U = Lagrangian

T = System kinetic energy

U = System potential energy

qi = Generalized coordinates

Qi = Sum of non-potential forces

lk = Lagrange Multipliers

_f(ql,q2,...,qn)
_qi = first partial

derivative of the constraint equation

with respect to the generalized coordinates

The last term on the right hand side of equation (5-13) repre-

sents the constraint forces which makes it possible to regard

all generalized coordinates, qi, as independent.

Four generalized coordinates are used to describe the

system position, velocity, and acceleration. They are;

Xl - describing M1

X2 - describing M2

ql - describing beam 2 relative to

foundation mass M1

q2 - describing beam 2 relative to

foundation mass M2

From the definition of generalized coordinates, these four

quantities are assumed independent of each other, and when used

together they describe the state of the dynamical system at any

time.
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The static deflection of a loaded cantilever beam is given

by the applied load divided by the stiffness. When considering

the dynamic deflection of a beam which has mass, this rela-

tionship is not valid, instead, the superposition of the

natural vibrational modes is used to describe the shape of the

deformation, and when multipled by the generalized coordinate,

qi, the actual deflection is obtained.

The mode shapes are an infinite set of eigenvectors

derived from the differential equation of the cantilever beam.

To exactly duplicate the deflection obtained from elasticity

theory, an infinite number of modes must be used. In practice,

however, only the first few contribute significantly to the

overall deflection, such as those illustrated in Figure 5-18.

t¢(_)

] jP:const. /E./:const. __

([)

L

¢2 (6)

2

84= _____P
EI

...._ _ .;,:4 6942_ , p.L4

¢3(_)

Figure 5-18: Natural Modes
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In this analysis, only the first mode shape is used, the

natural mode described by the equation;

_(_) = C[(sinSL-sinhSL)(sinS_-sinhS_)

+ (cos 8L+cosh 8L) (cos B_-cosh 8_) ] (5-14)

where the @arameters are defined in Figure 5-18.

We are now ready to develop the equations of motion for

the mass-beam system of Figure 5-17. The kinetic energy of the

system is determined by considering the velocity of the foun-

dations M1 and M2, and the vibration of the beams with respect

to the foundation masses. By defining the beam deflections to

be positive as shown in Figure 5-19, the kinetic energy of the

F '_

q2@/I

Figure 5-19: Beam deflection

configuration

XI r

p

system can be written as;

1 F L1"T --_,_lx12 + 2 _22 + _-p (Xl+ *i ql)2d_l
"0

1 _21+ _ p (X2 - _2 q2)2d_l

w 0

(5-15)
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The potential energy consists only of the strain energy due to

the beam deflections;

= ( ql)2dgl + (_2"q2)2dg2 (5-16)

0 0

Where @" is the second derivative of the mode shape with

respect to the length variable, _ . In equations (5-15) and

(5-16) the mass per unit length, p , the elastic modulus, E,

and the moment of inertia, I, are constant over the length of

the beams and can be left outside the integrals. Substracting

(5-16) from (5-15) to form the Lagrangian we have;

= • - = }.1 + }.2

-LI • _L2 •

+ i 0 [ CXl+ _! _l)2d_l+ ½ P i _x2- _2 _2)2d_2
" JO do

- }EI JO (*l ql)2dgl - 1EI *2'q2)2dg2a 0 (5-17 )

For the meshing cantilever beam system there are four

unknown parameters, Xl, X2, ql, q2 and their derivatives, each

dependent on time, describing the dynamical system. At any

time, t, the position of the system can be described by the

constraint equation;

X2-Xl - _lql - _2q2 = f(Xl,X2,ql,q2) = 0
(5-18 )

If the constraint equation is not satisfied, separation occurs

between the beams at the point of contact.

A Lagrange Equation of motion is written for each degree
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of freedom of the system corresponding to the four generalized

coordinates. This gives four equations relating the genera-

lized coordinates and I . Including the constraint equation or

its derivative gives a fifth equation necessary to determine .

In terms of Xl, the equation of motion, term by term,

becomes;

L1

_L = MlXl + 10 (Xl +
P _i 41) 2d_l

and;

ogld--_( ) = M1 Xl + p (Xl + _i ql)d_l
(5-19a)

_L

_Xl - 0.0 (5-19b)

On the right hand side, differentiation of the constraint

equation with respect to Xl yields;

_f
= -I 0 (5-19c)

_Xl "

Combining equations (5-19a) through (5-19c) along with the non-

constraint force, P, acting on MI, in the form of equation

(5-13) we have;

.LI _L2

(MI + P J0 d_l)Xl + P j (_i ql)d_l = P-I (5-20)
• 0

/.L1The term p d_l is simply the total mass of beam 1 which is
J0

defined as MBI. Similarly, with X2 as the generalized

caordinate;
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fOU2(M2 + MB2)X2 - p ¢2 q2 d_2 = P + I (5-21)

Performing the required differentiation of the Lagrangian and

constraint equation with respect to ql yields;

d( 8L ) ¢i
dt _ql = p (¢I Xl + ¢i 2 ql)d_l

_0

L1

_ql_---_L= -EIf0 (¢_2 ql )d_ 1

_f

-- = -¢i
_ql

(5-22a)

(5-22b)

(5-22c)

Combining equations (5-22a) through (5-22c), and noting that no

external (non-constraint) forces act on the beams, the equation

of motion derived with respect to ql becomes;

rLl . rLl

f: J0'+l' il'd l+RIJoP )d_l+P

Likewise for q2;

ql)d_l = -¢i I (5-23)

--P J0 (¢2X2)d_2+P (¢22q2)d_2+EI (¢ q2)d_2 = -¢21 (5-24)

The fifth equation of motion is determined by differentiating

the constraint equation twice with respect to time. This gives

an equation relating the second derivatives of the generalized

coordinates with respect to time. Differentiating equation

(5-18) once yields;
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_2-h-$1 ql-_1 41-$2q2-_2q2:0

After a second differentiation and rearrangement;

_2-_1-_1_i-_2_2 : _1q1+_2q2÷2($141÷$242, (5-25)

Equations (5-20), (5-21), (5-23), (5-24) and (5-25) are the

equations of motion describing the dynamical system of Figure

5-16.

These equations can be greatly simplified by making the

following substitutions:

PHI1 = _i ;

-LI

IPHII = p _ _id_l ;
0

PHI2 = _2

L2

IPHI2 = p _i _2d_2

.LI

0

Jl[2d_1
I2PHII = EI _OJ2_2d_ 2

I2PHI2 = EI

F(q1'q2'_1'_2)= _1 ql ÷ %°2q2 + 2($1&l ÷ $2 _2)

(see Appendix 5 for developments concerning these

simplifications). The equations can then be written in matrix

from in terms of the second derivatives and as;

[A]{_} = {_} (5-26)

where ;
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[A] =

u

(MI+MBI )

0

IPHII

0

-i

= ai1

0 IPHII 0 1

M2+MB2 0 -IPHI2 -i

0 1 0 PHI1

-IPHI2 0 1 PHI2

1 -PHI1 -PHI2 0

and { B }

m

I2PHI*ql

1-I2PHI2*q2

F(ql,q2, ¢i, ¢2

The only differences between equations (5-26) and the equation

of motion for the massless beam system (equation (5-11)) are

the inertial terms. These are; XI*IPHII, X2*IPHI2, and the

terms involving ql and q2. By eliminating the inertial terms

from matrix [A], the resulting equations describe the mass!ess

beam system. Appendix 6 includes the analysis and results from

this test.

The initial conditions governing the system described by

equations (5-26) are chosen such that the massless beam system

is emulated. When chosing the initial conditions, there are

two sets of parameters which must be considered. The first set

consists of the four position variables Xl, X2, ql and q2. In

section (5.1.1) it is stated that the beams assume a static

orientation at the beginning of the load cycle. Thus, by

chosing ql and q2 as;

P'PHI1
ql(0) = I2PHII

q2(0) -P'PHI2
I2PHI2

(5-27)
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and Xl(0) equal to zero as before, the deflection X2(0) is

determined from the constraint equation as;

X2(0) = qI(0)PHII + qI(0)PHI2 (5-28)

This same reasoning can be applied to the first derivatives of

the generalized coordinates, Xl, X2, ql and q2. Previously,

the initial velocities of the foundation masses were determined

such that X2-XI=0 at time equal zero. For this case, the same

effect is obtained by forcing;

XI(0) = 0.0

= o.o (5-29)

_i(0) = 0.0

Then, using the first derivative of the constraint equation the

value of q2(0) is determined from;

X2 - Xl = qI*PHII + q2*DIPHII + q2*PHI2 + q2*DIPHI2

where at time equal to zero, all terms are zero except for

those in equation (5-30);

q2(0) = (-qI*DIPHII- q2*DIPHI2)/PHI2 (5-30)

where DIPHII, DIPHI2 and PHI2 are evaluated at the beginning of

the load cycle and ql and q2 are taken from equations (5-27).

With the initial conditions described by equations (5-27)

through (5-30), the dynamic response of the system described in

equations (5-26) is determined.

For each time step during the load cycle, the system of
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equations (5-26) is inverted to determine the column matrix

{X} = {Xl X2 ql q2 _} T in terms of the current values of {5}

on the right hand side. At the beginning of the load cycle {X}

is determined for those initial conditions set forth pre-

viously, along with the right hand side {B}. The values of { X}

are then used with the first derivatives of the generalized

coordinates (initially equations (5-29) and (5-30)) as input

for a Runge-Kutta integration routine which integrates for the

desired solution parameters Xl, X2, ql and q2. It also deter-

mines the new Xl, X2, ql and q2 which are in turn used for the

next integration step. The algorithm containing the

Runge-Kutta (RKGS) and matrix inversion (SIMQ) subroutines

along with the parameters describing equations (5-26) is

included in Appendix 7. Therein lies a detailed description of

the programming steps for the solution of equations (5-26)

using the aforementioned initial conditions.

(5.2.2) Dynamic Response Results: Foundation Mass = 1.0 ibm

As stated in section (5.2.1), only the first material mode

of vibration is included when determining the dynamic response

of the meshing cantilever beams where the inertia of the beams

is included. One would then think that the system whose dyna-

mic response is composed of a single mode shape would be

somewhat stiffer than the same configuration where the beam

deflection is determined from elasticity theory. However, com-

paring Figures 5-7 to 5-11, with A6-1 to A6-5, it is seen that

the difference in deflections is negligible.
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In this analysis, with the beam inertia included, the

dynamic response is compared to the massless beam problem. At

slow moving, constant speed loads, the dynamic response con-

sists of quasi-static deflection with the moving load response

superimposed over it (see Figure 5-20). (Results for moving

load speed of 1.0 in/sec were not obtainable due to lack of

convergence in the Runge-Kutta integration routine).

Continuing to increase the moving load speed causes an increase

in the response as the resonant frequency is further excited as

shown in Figure 5-21 and 5-22. Increasing the moving load

speed above the system resonant frequency produces a much

smoother response as illustrated in Figure 5-23. Now, examina-

tion of Figures 5-20 through 5-23 compared to Figures 5-7

through 5-11 shows that for values of the foundation masses of

1.0 ibs and moving load speeds of 5.0, 10.0, 20.0 and 40.0

in/sec, the responses of the two cantilever beam systems are

essentially the same. The same conclusions are drawn when exa-

mining Figures 5-24 through 5-27 as compared to Figures 5-13

through 5-16. Here, the initial conditions are changed such

that the beams experience an impact load at the beginning of

the load cycle. From the figures it can be seen that the

responses of the two systems are again, very much the same.

As done for the massless beam configuration, the speed of

the moving loads is allowed to vary linearly from zero to a

maximum value during the load cycle. This analysis serves as a

useful check since the initial conditions are easily defined

due to a stationary load. The results from this analysis are

contained in Appendix 4.
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(5.2.3) Dynamic Response Results:
Foundation Mass = 1.0E-4 ibs.

In order to substantiate the conclusion that the dynamic

response is not dependent on the mass of the beam, both the

massless beam and inertial beam configurations are analyzed

again with a decrease in the difference between the values of

the beam and foundation masses. Of course the mass of the beam

is not included in the massless beam analysis. Previously the

mass of the foundation was 1.0 Ibs and the total mass of the

beam was approximately 3.6E-6 ibs. In this analysis, the

foundation mass is decreased to 1.0E-4 ibs while the mass of

the beam remains the same. Since the overall mass of the

system is greatly decreased, the corresponding resonant fre-

quency is much larger. Using an approximation of the resonant

frequency using a single mass and the load at the midpoint of

the beam yields an approximate resonant frequency of;

= =_I_E_-44 ( ) _ 3500 cycle/sec.

and a cycle period of approximately 2.875E-4 sec. Therefore,

in order to provide an adequate range of moving load speeds

such that the system resonance is bracketed, speeds of 100.,

500., i000., 1500. and 2000. in/sec are used. (Approximately

one oscillation cycle occurs at 1700 in/sec). To facilitate

comparisons of respective systems, the results are presented in

a parallel fashion. Figures 5-28 and 5-29 show the respective

responses for a moving load speed of 500 in/sec. As seen from

the plots, the responses are virtually the same. The results

are similar for the other moving load speeds (see Figure 5-30

through 5-35).
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6. CONCLUSIONS

The objectives of this analysis were twofold. First, the

dynamic response of a single spur gear tooth subject to moving

loads was studied to determine the effect of the speed of move-

ment of the load. A spur gear tooth, modelled using finite

element techniques, was used in the analysis. From this analy-

sis it was found that the dynamic response of a single gear

tooth is not dependent on the speed of the moving load, but

rather on the type of load engagement experienced at the

beginning of the load cycle. Including the rim in the analysis

added flexibility to the system but did not change the overall

response.

The second objective was to determine whether or not the

mass (inertial forces) of the tooth can be neglected when small

compared to the mass of the gear hub. A simplified analysis

using meshing cantilever beams was used. For the range of

speeds tested, it was found that the inertia forces of the

tooth are small and therefore, the mass of the tooth can be

neglected when determining the dynamic response of a meshing

gear system.
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

* SPUR GEARTOOTH PROFILE GENERATOR *

* WRITTEN BY LYLE W. SHUEY *

* .

* THIS PROGRAM GENERATES A FINITE ELEMENT *

* MESH FOR EITHER A HIGH CONTACT RATIO *

* GEAR OR A LOW CONTACT RATIO GEAR, IN- *

* CLUDING THE FOUNDATION AND RIM IN THE *

* MODEL. *

* A MINIMUN OF INPUT PARAMETERS ARE NEEDED*

* TO DESCRIBE THE GEAR GEOMETRY. *

* THEY ARE; *

* PRESSURE ANGLE :PANG *

* PITCH RADIUS :RP *

* ADDENDUM :AD *

* DEDENDUM :DED *

* CIRCULAR PITCH :CIRP *

* BACKLASH :BACKL *

* FILLET RADIUS :RF *

* RIM THICKNESS :RTH *

C******

C******

C

THE PROGRAM READS THE INPUT VARIABLES

USING THE PROCEEDING STATEMENTS.

DIMENSION DUMY (20) ,YPRF (20), XPRF (20)

DIMENSION XX(40),YY(40),XN(400),YN(400)

DIMENSION XANG(9,9),XADA(9),XINC(9)
PI=3. 141592654

READ (5, *) PANG

WRITE (6, *) 'PRESSURE ANGLE : ' ,PANG

PANG=PANG* PI/180.

READ(5,*) RP

WRITE(6,*) 'PITCH RADIUS:

READ(5,*) AD

WRITE (6, *) 'ADDENDUM:

READ(5,*) DED

WRITE (6, *) 'DEDENDUM:

READ(5,*) CIRP

WRITE (6, *) 'CIRCULAR PITCH:

READ(5,*) RF

WRITE(6,*) 'FILLET RADIUS:

READ (5, *) BACKL

WRITE (6, *) 'BACKLASH:

READ(5,*) RTH

WRITE(6,*) 'RIM THICKNESS:

RB=RP*COS (PANG)

THP= ((RP*RP-RB*RB) / (RB*RB)) **. 5

CIRTH=CIRP/2. -BACKL

WRITE(6,*) 'CIRTH:

AL=THP-ATAN (THP) +CIRTH/(RP*2. )

DP=PI/CIRP

WRITE (6, *) 'DIAMETRAL PITCH: ',DP
RR=RP-DED

RO=RP+AD

]40

',RP

',AD

',DED

',CIRP

',RF

',BACKL

',RTH

' CIRTHo



C

C

C

C

C

C

C

C******

C

* THIS SECTION CALCULATES POINTS ON THE *

* INVOLUTE SURFACE, FOUNDATION, AND RIM *

* WHICH WILL LATER BE USED TO GENERATE *

* NODAL COORDINATES. (BOTH HCRG AND LCRG)*

5
C

C

GENERATING POINTS ON THE INVOLUTE PROFILE

DO 5 I=l,ll

IA=I+ (I-l)

HH= (RO-RB)/i0.

H=RO-HH* (I-l)

ANG= ((H*H-RB*RB) / (RB*RB)) **. 5

X=-RB* (SIN (ANG) -ANG*COS (ANG))

Y=RB* (COS (ANG) +ANG*SIN (ANG) -i)

ANGF=ATAN (SIN (ANG)/COS (ANG)) -AL

ANGF=ANGF* 18 0./PI

XP=RB*SIN (AL) +X'COS (AL) +Y'SIN (AL)

YP=RB*COS (AL) -X'SIN (AL) +Y'COS (AL)

XX (IA) =XP

YY (IA) =YP

WRITE(6,*) 'XP:',XP,'YP:',YP,'THETA:',ANGF

CONTINUE

_u_Ir T_ ('-_']_ T.C: T,("W('. OR HCRG

CHECK=RR*RR+2.*RR*RF

ITAN=2

IF(CHECK.LT.RB*RB) ITAN=I

IF(ITAN.NE.I) GO TO 15

STRAIGHT LINE TANGENT TO INVOLUTE (HCRG)
C

C******

C

DD = (-2. *RR+ (4. *RR*RR+4. *2. *RF*RR) **. 5)/2.

D=RB- (RR+DD)

DDD=RB-RR

XTAN= (D/DDD)

XFILL = (DD/DDD)

LTAN=INT (XTAN*8.)

LFILL=INT (XFILL*8.) +i

WRITE(6,*) 'DD: ',DD

WRITE(6,*) 'D: ',D

WRITE(6,*) 'DDD: ',DDD

WRITE (6, *) 'XTAN : ' ,XTAN

WRITE(6,*) 'XFILL: ',XFILL

WRITE(6,*) 'LFILL: ',LFILL

WRITE (6, *) 'LTAN : ',LTAN

DRI=D/LTAN
DR=0 •0

DO i0 I=I,LTAN

IA=I2+ (I-l)

XP=XP - ( ((RB-DR) *SIN (AL)) - ((RB-DRI) *SIN (AL)) )

YP=YP- ( ((RB-DR) *COS (AL)) - ((RB-DRI) *COS (AL)) )

DR=DRI

DRI=DRI+D/LTAN

XX (IA) =XP

YY (IA) =YP
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10 CONTINUE
C
C********* FILLET RADIUS
C

BETA=ATAN((RR+RF)/RF)
BETA=BETA/LFILL
DO Ii I=I,LFILL

IA = (12+LTAN) + (I-l)
X=RF-RF*COS(BETA*I)

SECTION (HCRG)

Ii

Y=-RF*SIN(BETA*I)
XP=(RB-D)*SIN(AL)+X*COS(AL)+Y*SIN(AL)
yp=(RB-D)*COS(AL)-X*SIN(AL)+Y*COS(AL)
XX(IA)=XP
YY (IA)=YP

CONTINUE

GO TO 21

GENERATING POINTS FOR FILLET RADIUS
C

C******

C

15 DD=RB-RR

RF= ((DD*DD) + (2. *DD*RR) )/ (2. *RR)

WRITE(6,*) 'NEW FILLET RADIUS

BETA=ATAN ((RR+DD)/RE)

WRITE(6,*)'BETA:',BETA*I80./PI

BETA=BETA/8.0

DO 20 I=I,8

IA=I2+ (I-l)

X=RF-RF*COS(BETA*I)

20

C

C******

C

21

',RF

Y=-RF* S IN (BETA* I )

XP=RB*SIN (AL) +X,COS (AL) +Y,SIN (AL)

YP=RB*COS (AL) -X,SIN (AL) +Y,COS (AL)

XX (IA) =XP

YY (IA) =YP

WRITE(6,*) 'XP:',XP,'YP:',YP

CONTINUE

GENERATING POINTS ON OUTER RIM SURFACE

ADA=ASIN ((XP+CIRTH)/RR) -ASIN (XP/RR)

DADA=ADA/6.

ADAI=ASIN (XP/RR)

WRITE(6,*) 'ADA: ' ,ADA*IS0./PI

DO 30 I=i,4

IA=20+ (I-l)

DUMY (I ) =i 0.

XP=XP+RR* (S IN (ADAI+DADA) -SIN (ADAI) )

YP=YP-RR* (COS (ADAI) -COS (ADAI+DADA))

XX (IA) =XP

YY (IA) =YP

WRITE(6,*) 'XP:',XP, 'YP:',YP

DADA=ADA/4.

ADAI=ADAI+DADA

30 CONT INUE

C

C****** GENERATING POINTS

C

DELTA=AS IN (XP/RR)

RIM=RR-RTH

DRTH=RTH/4.

(LCRG)

ON RADIAL PORTION OF RIM
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4O

DX=RR*SIN( not m_ _ --DTM*_ TkT [n_T.'T'A %

DDX=DX/4.0

DO 40 I=i,4

IA=24+ (I-l)

XPRF (I )=XP-DDX

YPRF (I )=YP-DRTH

XX (IA) =XPRF (I )

YY (IA) =YPRF (I )

DRTH=DRTH+RTH/4.

DDX=DDX+DX/4.0

WRITE(6,*) 'XP:',XPRF(I),'YP:',YPRF(I)
CONTINUE

XP=XPRF (4 )

YP=YPRF (4)

C

C****** GENERATING POINTS ON INNER

C

DELTA=ATAN (XP/YP)

XLEG= ((XP*XP) + (YP*YP)) **. 5

DELTAI=DELTA/4.0

DO 50 I=i,4

IA=28+ (I-l)
DELTA=DE LTA-DELTA 1

XPRF (I )=XLEG*SIN (DELTA)

YPRF (I )=XLEG*COS (DELTA)

XX (IA) =XPRF (I )

VV{T_=V]DR_(T)

RIM SURFACE

50

C

C

C

C

C

C

C

C

C****** GENERATING NODES

C

II=0

DO 60 I=l,ll

IA=I+ (I-l) *ii

YA=YY (I )

XA=XX (I)
AZ=XA*.I5

BZ=XA*.30

CZ=XA*.50

DZ=XA*.75

XN(IA)=-XA

XN(IA+I0)=XA

XN(IA+I)=-XA+AZ

XN(IA+9)=XA-AZ

XN(IA+2)=-XA+BZ

XN (IA+8 )=XA-BZ

XN(IA+3)=-XA+CZ

XN(IA+7)=XA-CZ

XN(IA+4)=-XA+DZ

XN (IA+6 )=XA-DZ

XN(IA+5) =0.0

WRITE(6,*) 'XP:',XPRF(I),'YP:',YPRF(I)

CONTINUE

*****************************************

* THIS SECTION USES COORDINATES FROM *

* THE PREVIOUS SECTIONS TO CALCULATE *

* NODAL NUMBERS AND COORDINATES. THERE *

* ARE 319 NODES USED IN THIS MODEL. *
*****************************************

1-121
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DO 60 J=l,ll
II=II+l
YN(II) =YA

60 CONTINUE
C
C****** GENERATINGNODES
C

75

7O

71
C

\

8O

C

122-209

DANG=2.5

SANG=I0.0

DO 70 I=I,8

DXANG=SANG

DO 75 J=l,4

XANG(I,J)=DXANG
DXANG=DXANG-DANG

WRITE (6, *) XANG (I, J)

XANG (I, J) =XANG (I ,J) *PI/180.

CONTINUE

DANG=DANG+2.5

SANG=SANG+I0.

CONTINUE

DO 71 I=I,8

XANG(I,4)=0.0
CONTINUE

DO 80 I=i,8

IA=122+ (I-l) *ii

XA=XX (ll+I)

YA=YY (ll+I)
AZ=XA*. 15

BZ=XA*. 30

CZ=XA*. 50

DZ=XA*. 75

DZ=DZ* (i.+ (I*. 02) )

XN (IA) =-XA

XN (IA+ 10 )=XA

XN (IA+ i) =-XA+AZ*COS (XANG (I, i) )

XN (IA+9 )=-XN (IA+I)

XN (IA+ 2 )=XN (IA+ 1 )+ (BZ-AZ ) *COS (XANG (I, 2 ) )

XN (IA+8) =-XN (IA+2)

XN (IA+3) =XN (IA+2 )+ (CZ-BZ) *COS (XANG (I, 3 ) )

XN (IA+7 )=-XN (IA+3 )

XN (IA+ 4 )=XN (IA+ 3 )+ (DZ- C Z )* COS (XANG (I, 4 ) )

XN (IA+ 6) =-XN (IA+4 )

XN(IA+5) =0.0

IF(I.EQ. 7) CZ=CZ*I. 1

IF(I.EQ.8) CZ=CZ*I. 15

YN (IA) =YA

YN (IA+I0) =YA

YN (IA+ i) =YA-AZ* S IN (XANG (I, 1 ) )

YN (IA+9) =YN (IA+I)

YN (IA+ 2 )=YN (IA+ 1 )

YN (IA+8) =YN (IA+2 )

YN (IA+3) =YN (IA+2 )

YN (IA+7) =YN (IA+3)

YN (IA+4) =YN (IA+3 )

YN (IA+6) =YN (IA+4)

YN (IA+5) =YN (IA+4 )
CONTINUE

- (BZ-AZ) *SIN (XANG(I, 2) )

-(CZ-BZ) *SIN (XANG (I, 3) )

- (DZ-CZ) *SIN (XANG(I, 4) )
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DZ=DZ/!_!6

CZ=CZ/I.15

C

C****** GENERATING

C

NODES 210-233

DO 85 I=1,3

J=20+ (I-l)

XINC (I) =ATAN (XX (J)/YY (J))
85 CONTINUE

DINC=XINC (i)/2.

DO 90 I=1,3

IA=210+ (I-1) *8

YA=YY (19+I)

XA=XX (19+I)

XN (IA) =-XA

XN (IA+7 )=XA

XN (IA+I )=XN (IA) +AZ*S IN (XINC (I) )

XN (IA+6) =-XN (IA+I)

XN (IA+2) =XN (IA+I) + (BZ-AZ) *SIN (XINC (I))

XN (IA+5 )=-XN (IA+2 )

XN (IA+3 )=XN (IA+2 )+ (CZ-BZ ) *S IN (XINC (I ) )

XN (IA+4 )=-XN (IA+3 )

YN (IA) =YA

YN (IA+7 )=YA

YN (IA+I) =YA-AZ*COS (XINC (I))

YN (IA+6) =YN (IA+I)

YN (IA+2) =YN (IA+I) - (BZ-AZ) *COS (XINC (I))

YN (IA+5) =YN (IA+2)

YN (IA+3 )=YN (IA+2 )- (CZ-BZ) *COS (XINC (I ) )

YN (IA+4 )=YN (IA+3 )

90 CONTINUE

C

C****** GENERATING NODES 234-241

C

DELTA=ATAN (XX (23 )/YY (23 ) )

ALPHA=DELTA-ATAN (XN (206)/YN (206))

XN(241) =XX(23)

C

YN(241) =YY (23

XN (234) =-XN(2

YN(234) =YN (24

XN(240) =XN (24

YN(240) =YN-(24

XN (235) =-XN (2

YN(235) =YN (24

XN(239) =XN (24

YN(239) =YN (2

XN (236) =-XN (

YN(236) =YN(2

XN(238) =XN (2

YN(238) =YN(2

XN(237) =-XN (

YN(237) =YN(2

)
41)

1)
I) -AZ*S IN (DELTA)

i) -AZ*COS (DELTA)

4O)
0)
1 )-BZ*S IN (DELTA)

41) -BZ*COS (DELTA)

239)

39)

4 i) -CZ*SIN (DELTA)

41) -CZ*COS (DELTA)

238)

38)

C****** GENERATING NODES 242-319

C

RIM= (YN (238) -YY (27))/COS (DELTA)

DRIM=RIM/6.0

DO i00 I=I,5

IA=238- (I-l) *8
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i00
C

iii

ii0

C

120

119

125

C

130

i000

C

XADA(I)=ATAN(XN(IA)/YN(IA))

XADA(6)=ATAN(XN(205)/YN(205))
CONTINUE

DO ii0 I=I,6

IA=238- (I-l) *8

ix=2s4- (i-1)
IF(I.EQ. 6) IA=205

XN (254 ) =XN (238 ) -DRIM*SIN (XADA (i) )

YN (254 ) --YN (238 )-DRIM* COS (XADA (1 ) )

XRAD=XN (254)/SIN (XADA (i) )

IF(I.EQ.I) GO TO iii

XN (IX) =XRAD*SIN (XADA (I))

YN (IX) =XRAD*COS (XADA (I ) )

XN (IX- (14-2"I)) =-XN (IX)

YN (IX- (14-2"I)) =YN (IX)
CONTINUE

DO 119 J=l,6

DO 120 I=i,6

IA=255+ (J-l) *13+ (I-l)

XN (IA) =XN (IA-13 )+DRIM*SIN (XADA (I))

YN (IA) =YN (IA-13 ) -DRIM*COS (XADA (I) )

XN (IA+ (14-2"I ) )=-XN (IA)

YN(IA+ (14-2"I)) =YN (IA)
CONTINUE

CONTINUE

DO 125 I=i,6

IA=248+ ((I-l) "13)

XN(IA) =0.0

YN (IA) =YN (IA-I)
CONTINUE

DO 130 I=i,319

WRITE(II,1000) I,XN(I),YN(I)
CONTINUE

FORMAT(II0,7X,'0.0',FI0.5,FI0.5)

C******

C

C

C

C

C

C

C

C

C

THIS ENDS THE NODE GENERATION SECTION

*****************************************

* THIS SECTION GENERATES THE ELEMENTS *

* AND ELEMENT NUMBERS. TWO-DIMENSIONAL*

* 4-NODED ELEMENTS ARE USED. FOR THIS *

* MODEL THERE ARE 276 ELEMENTS. *
*****************************************

C****** GENERATING ELEMENTS

C

II=O

DO 140 I=i,18

IA=I2+ (I-l) *ii

IB=I3+ (I-l) *Ii

IC=2+ (I,l) *ii

ID=I+ (I-l) *ii

DO 145 J=l,10

II=II+l

LA=IA+ (J-i)

1-183
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145
140

LC=IC+ (J-l)
LD=ID+ (J-l)

WRITE(ii, i12) II, LA, LB, LC, LD
CONTINUE
WRITE(ii, 112) 181,210,211,200,199
WRITE(ii, 112) 182,211,212,201,200
WRITE(II, 112) 183,212,213,202,201

C
C****** GENERATINGELEMENTS
C

II=183

DO 150 I=I,3

IA=218+ (I-l)

IB=219+ (I-l)

IC=211+ (I-l)

184-195

155

150

*8

*8

*8

ID=210+ (I-l) *8

DO 155 J=l,3

II=II+l

LA=IA+ (J-Z)

LB=IB+ (J-l)

LC=IC+ (J-l)

LD=ID+ (J-l)

WRITE (ii, 112 )II, LA, LB, LC, LD

CONTINUE

WRITE (ii, 112) 193,214,215,207,206

WRITE (ii, 112 ) 194 :215 t216 t_08 ;_07

WRITE (ii, 112) 195,216,217,209,208

C

C****** GENERATING ELEMENTS 196-203

C

II=195

DO 160 I=i,3

IA=222+ (I-l) *8

IB=223+ (I-l) *8

IC=215+ (I-l) *8

ID=214+ (I-l) *8

DO 165 J=l,3

II=II+l

LA=IA+ (J-l)

LB=IB+ (J-l)

LC=IC+ (J-l)

LD=I D+ (J-i)

165 WRITE (ii, 112 ) II, LA, LB, LC, LD

160 CONTINUE

C

C****** GENERATING ELEMENTS 204-213

C

II=204

DO 170 I=i,3

LA=242+ (I-l)

LB=243+ (I-l)

LC=229- (I-l) *8

LD=237- (I-l) *8

II=II+l

170 WRITE (ii, i12) II, LA, LB, LC, LD

WRITE (ii, 112) 208,245,246,202 ,213

WRITE (ii, 112) 209,246,247,203,202

WRITE (ii, 112) 210,247,248,204,203
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._.-..r. _ ±_, J.±Z ) _- .LJ., -_, _-4_, 20_, 204
WRITE (ii, 112) 212,249,250,206,205

WRITE (ii, 112) 213,250,251,214,206

C

C****** GENERATING ELEMENTS 214-276

C

II=213

DO 180 I=I,3

LA=251+ (I-l)

LB=252+ (I-l)

LC=222+ (I-l) *8

LD=214+ (I-l) *8

II=II+l

180 WRITE (ii, i12) II, LA, LB, LC, LD
II=216

DO 190 I=i,5

IA=255+ (I-l) "13

IB=256+ (I-l) *13

IC=243+ (I-l) "13

ID=242+ (I-l) "13

DO 195 J=l,12

II=II+l

LA=IA+ (J-l)

LB=IB+ (J-l)

LC=IC+ (J-l)

LD=ID+ (J-l)

WRITE (ii, 112) II, LA, LB, LC, LD
CONTINUE

195

190

C

112

C

C****** THIS ENDS

C

STOP

DEBUG SUBCHK

END

FORMAT(I5,4X,'8',415,23X,'21',4X,'I')

THE ELEMENT GENERATION SECTION
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C

C

C

C

C
C

C

C

C

C

C
C

C

C
C

C

C

C

C

C
C

C

C

C

C
C

C

C

C
C

C

C
C

C

C

VARIABLE SPEED/LOAD GENERATION PROGRAM

THIS PROGRAM GENERATES THE SAP6 TIME

FUNCTIONS DESCRIBING THE LOAD MOVING

OVER THE INVOLUTE OF A GEAR TOOTH. THE
SPEED OF THE MOVING LOAD ON THE INVOLUTE

OF A TOOTH VARIES AS

V(T)=RB*OMEGA**2*T

WHERE RB IS THE BASE RADIUS OF THE GEAR

OMEGA IS THE ANGULAR VELOCITY OF THE GEAR

AND T IS THE ELLAPSED TIME. THE LOAD

FUNCTIONS WERE TAKEN FROM WALLACE, AND ARE

F (T) =F0 (I-COS (T/ALPHAT))/2 0<T<ALPHAT

F (T) =FO ALPHAT<T< (I-ALPHA) TF

F (T) =F0 (1-COS (T-ALPHATF)/ALPHATF) )/2
(1-ALPHA) TF<T<TF

WHERE TF IS THE TOTAL TIME, AND ALPHA IS
A FACTOR n_p_NDENT ON THE CONTACT RATIO.

THE USER MUST ENTER THE FOLLOWING PARAMETERS

PRESSURE ANGLE=PANG
PITCH RADIUS =RP

ADDENDEM =AD

CIRCULAR PITCH=CIRP

BACKLASH =BACKL
MAX VELOCITY =VMAX

***************************************************

DIMENSION XX(40),YY(40),FORCE(II,500),TIME(500),T(500)

DIMENSION XINC(II),DXINC(II),FX(II,500),FY(II,500),XN(15),YN(15)
PI=3. 141592654

READ (5, *) PANG

PANG=PANG* PI/180.

READ(5,*) RP

READ(5,*) AD
READ (5, *) CIRP

READ (5, *) BACKL

READ (5, *) VMAX

RB=RP*COS (PANG)
THP-- ((RP*RP-RB*RB) / (RB*RB)) **0.5

CIRTH--CIRP/2. -BACKL

AL=THP-ATAN (THP) +C IRTH/( RP* 2. )
RO=RP+AD

C
***************************************************

C THE INVOLUTE COORDINATES AND INVOLUTE NORMALS *

C ARE CALCULATED IN THIS SECTION. *
***************************************************

C

DO 5 I=l, ii
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IA=I+ (I-l)

HH= (RO-RB)/i0.

H=RO-HH* (I-l)

ANG= ((H*H-RB*RB) / (RB*RB)) **0.5

Y=RB* (COS (ANG) +ANG*SIN (ANG) -i. )

X=-RB* (SIN (ANG) -ANG*COS (ANG))

XP=RB*SIN (AL) +X'COS (AL) +Y'SIN (AL)

YP=RB*COS (AL) -X'SIN (AL) +Y'COS (AL)

XX (IA) =XP

YY (IA) =YP

XN (I) =-SIN (AL) *SIN (ANG) -COS (AL) *COS (ANG)

YN (I)=SIN (AL) *COS (ANG) -COS (AL) *SIN (ANG)
5 CONTINUE

C

***************************************************

C THE DISTANCE ALONG THE INVOLUTE IS DETERMINED *

C FROM WHICH THE TOTAL TIME AND ANGULAR VELOCITY *

C ARE FOUND. *

***************************************************

C

S=0.0

DO 6 I=l,10

XL=XX (I+l) -XX (I)

YL=YY (I) -YY (I+l)

XINC(I)= (XL**2+YL**2) **0.5

S=S+XINC (I )

WRITE(6,*) 'XINC(I)= ',XINC(I),' S= ',S
6 CONTINUE

TF=2. *S/VMAX

XOMEGA= (VMAX/(TF*RB) ) **. 5

WRITE(6,*) 'TF= ',TF, ' OMEGA=

TALPHA=O. 28 *TF

WRITE (6, *) 'TALPHA= ',TALPHA, '
C

C THE DISTANCE BETWEEN EACH NODE IS DIVIDED UP *

C INTO 20 EQUAL INCREMENTS AND THE TIME AND *

C AND FORCE VALUES ARE DETERMINED FOR EACH. *

C

DIST=0.0

DO I0 I=l,10

DXINC (I) =XINC (I)/20.

DO 15 J=l,20

JJ=J+20* (I-l)

DIST=DIST+DXINC (I )

TIME (JJ) = (2.*DIST/(RB*XOMEGA**2) ) **0.5

T(JJ) =TIME (JJ)

IF (TIME (JJ) .GT.TALPHA) GO TO ii

ii

12

15

i0

C

' ,XOMEGA

(1-ALPHA) *TF=

FORCE (I, J) = (FO/2.) * (i. -COS (PI*TIME (JJ)/TALPHA) )
GO TO 15

IF(TIME(JJ).GT.(TF-TALPHA)) GO TO 12

FORCE(I,J)=FO

GO TO 15

FORCE(I,J) = (FO/2.) * (I.-COS (PI* (TF-TIME (JJ))/TALPHA) )
CONTINUE

CONTINUE

DO 20 I=l, 1
150
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30

20

36

37

35

25

C

DO 30 J=l,20

JJ=J+20* (I-1)

FX (I, J+20) =FORCE (I, J) * ( (XINC (I)- (RB* (XOMEGA**2)/2. )

$*TIME (JJ) *'2)/XINC (I)) *XN (I)

FY (I, J+20) =FORCE (I, J) * ( (XINC (I) - (RB* (XOMEGA**2)/2. )

$*TIME (JJ) *'2)/XINC (I)) *YN (I)

FACT= (RB* (XOMEGA**2)/2. ) * (TIME (JJ+180) **2-TIME (180) **2 )

FX (ii, J) =FORCE (i0, J) * (FACT/XINC (i0 ) ) *XN (ii )

FY (1 i, J) =FORCE (10, J) * (FACT/XINC (10) ) * YN (1 I)
CONTINUE

CONTINUE

DO 25 I=2,10

DO 35 J=l,20

JJ=J+20* (I-2)

XTIMEI=TIME ((I-l) *20)

IF(I.NE.2) GO TO 36
XTIME=0.0

GO TO 37

XTIME=TIME ((I-2) *20)

FACT= ( (RB* (XOMEGA**2) )/2. )* (TIME (JJ) **2-XTIME**2 )

FACT1= ( (RB* (XOMEGA**2) )/2. ) * (TIME (JJ+20) **2-XTIMEI**2 )

FX (I, J) =FORCE (I- i, J) * (FACT/XINC (I- i) ) *XN (I )

FY (I, J )=FORCE (I- i, J ) * (FACT/XINC (I- 1 ) ) *YN (I )

FX (I, J+20) =FORCE (I ,J) * ( (XINC (I) -FACT1)/XINC (I)) *XN (I)

FY (I, J+20) =FORCE (I ,J) * ( (XINC (I) -FACT1)/XINC (I)) *YN (I)
CONTINUE

**************************************************

C THE REMAINDER OF THE PROGRAM WRITES THE TIME *

C FUNCTION VALUES (TIME,FORCE) TO A FILE FOR *
C USE IN A FINITE ELEMENT CODE. THIS PROGRAM *

C IS FORMATTED FOR SAP6. *

**************************************************

C

NFN=22

WRITE(II,99) NFN

99 FORMAT(3X,I2,4X,'0',4X,'0',3X,'NT',4X,'I',6X,'DPER',7X,'0.0')
IFN=0

DO 60 I=l,ll

NP=II+II*(I-I)
IC=2

DO 60 J=l,2
IFN=IFN+I

WRITE(II,98) NP, IC,IFN
IC=3

98 FORMAT(I5,4X,II,I5,4X,'I',7X,'I.0',24X,'0')

60 CONTINUE

WRITE(II,97)

FORMAT (/' ')97

C

C***** TIME

C

TF=I. 0

T0=0.0

F0=0.0

C******** TIME

C

NLP=24

FUNTION DATA ****

FUNCTION FOR NODE 11 *******
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i01

i00

20O

201

C******

C

WRITE(II,IOI) NLP

FORMAT(3X,I2,11X,'TIME

FORMAT(3 (El2.6, FI2. O) )

WRITE(f1,100)

DO 200 I=3,18

WRITE(If,100)

WRITE(If,100)

WRITE(II,IOI)

WRITE(II,IO0)

DO 201 I=3,18

WRITE(If,100)

WRITE(If,100)
TIME FUNCTIONS NODES

FUNCTION',50X,'I')

203

205

202

C

C****

C

206

207

C

C****

C

42

52

T0,FO,T(1) ,FX(I, 21) ,T(2) ,FX(I, 22)

,3

T(I), FX(I, I+20) ,T(I+I) ,FX(I, I+21) ,T(I+2) ,FX(I, I+22)

TF, F0,TF, F0,TF,F0

NLP

T0,F0,T(1) ,FY(I, 21) ,T(2) ,FY(I, 22)

,3

T(I) ,FY(I, I+20) ,T(I+I) ,FY(I, I+21) ,T(I+2) ,FY(I, I+22)

TF, F0,TF, F0,TF, FO
FOR 22 THRU ii0 *****

DO 202 I=2,10
NLP=45

WRITE (ii, i01) NLP

K=20* (I-2)

T(0)=O.0

WRITE(If,100) T0,F0,T(K),FO,T(I+K),FX(I,I)

DO 203 J=2,38,3

WRITE(If,100) T(J+K),FX(I,J),T(J+I+K),FX(I,J+I),T(J+2+K),FX(I,J+2'_

WRITE (Ii, i00) TF, FO, TF, F0,TF, FO

WRITE(If, i01) NLP

WRITE(II,100) T0,F0,T(K),F0,T(I+K),FY(I,I)

DO 205 J=2,38,3

WRITE(II,100) T(J+K),FY(I,J),T(J+I+K),FY(I,J+I),T(J+2+K),FY(I,J+2',

WRITE(If, i00) TF, FO, TF, F0, TF, FO
CONTINUE

TIME FUNCTION FOR NODE 121 *******

NLP=24

WRITE(II,101) NLP

WRITE(II, i00) T0, F0,T (180) ,F0,T(181) ,FX(II, i)

DO 206 I=2,17,3

K=I+I80

WRITE(II,100) T(K),FX(II,I),T(K+I),FX(II,I+I),T(K+2),FX(II,I+2)

WRITE(If,100) T(200),FX(II,20),TF,F0,TF,F0

WRITE(II, I01) NLP

WRITE(II,100) T0,F0,T(180),F0,T(181),FY(II,I)

DO 207 I=2,17,3
K=I+I80

WRITE(II,100) T(K),FY(II,I),T(K+I),FY(II,I+I),T(K+2),FY(II,I+2)

WRITE(II,IO0) T(200),FY(II,20),TF,F0,TF,F0

ECHO CHECK ******

DO 40 I=l,ll

IF(I.NE.I) GO TO 52

DO 42 J=l,20

JJ=J+20*(I-l)

WRITE(12,51)
CONTINUE

GO TO 40

IF(I.EQ.II) GO TO 53

DO 45 J=l,20

JJ=J+20*(I-2)

WRITE(12,51)

T(JJ) ,FX (I,J+20)

T(JJ) ,FX(I,J)
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45

46

53

50

4O

51

CONTINUE

DO 46 J=l,20

JJ=J+20* (I-l)

WRITE (12,51)
CONTINUE

GO TO 40

DO 50 J=l,20

JJ=J+20* (I-2)

WRITE (12,51)
CONTINUE

CONTINUE

FORMAT (F12 .8,12X, F8 .0)
STOP

END

T(JJ) ,FX (I, J+20)

T(JJ) ,FX(I, J)
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APPENDIX 2

Contact Point Velocity

Of Meshing Spur Gear Teeth
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For a meshing spur gear pair, the speed of the contact

point varies with time as it moves from the tip of the tooth to

the base circle.

From equations (2-3) and (2-4) and Figure A2-1 the coor-

dinates of a point Bi on the involute are given by;

XB i = -RB(sin 8i - 8icosSi)

YB i = RB(cosSi + 8isinSi - i)

(A2-1)

(A2-2)

Differentiating (A2-1) and (A2-2) with respect to 8i;

dXBi=- RB_sinSi

d8 i

dYB i
------= - RB 81cos 81

A_ _ _

_i

and combining to give the resultant;

- 2 dXBi dYBi

2 + 2
1 l

2
= RB 2 8i (sin28i+cos28i)

(A2-3)

(A2-4)

(A2-5)

Multiplying through by d 8i = 6i, realizing that 8i and r vary

with time, we have

d_
_[_ = V = RBOi8 i

And if we define 8i = _t;

where;

V(t) = RB_2t (A2-6)
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Figure A2-1: Contact point goemetry
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V(t) = the speed of the contact

point B i at time t

= angular velocity of the gear (rad/sec)

At t = 0.0, corresponding to the load at the tip of the tooth,

the speed is zero, and at t = TF, time corresponding to the

load positioned at the base circle, thespeed is maximum.

The position of the load as a function of time is found by

integrating equation (A2-6) with respect to time. By defining

the speed as the first derivative of the position;

V(t) - dS(t) = RB_2t
dt

q_. 0 •

S(t) = _RB_2t 2 + C (A2-7)

Evaluating the constant of integration for t = T i, the time at

the tip of the tooth;

then;

S(t i) = 0.0 --_RB_2Ti2+ C

c - -%RBJT 
1

The displacement then becomes;

S(t) = _RB_2t 2 - _RB_2Ti2

(A2-8)

(A2-9)

If we assume that the time at the tip position is zero the

constant term vanishes and we are left with only the first term
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on the right hand side of equation A2-9 defining the position

along the involute.
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APPENDIX 3

Deformed Shapes of Gear Tooth

i. Static Loading

2. Modal Analysis

3. Dynamic Response
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Static Loading

Timoshenko Beam Constraints

Rim Included
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STRTIC DEFLECTION 8NRLYSIS: GERR _I (BERM CONSTR)

UNDEFORMED SHRPE

SEPTEMBER 09. 1983 01:37:07

IRXIS=3 ALPHR= 0.00 BETA= 0.00

V

I

//11111\\\\
//1111_ \\\\

1/11111\\\\
/1111111\\\

f I I I I I I I _1

I

% ,I

Figure A3-1
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STRTIC DEFLECTION ANRLYSIS: GERR ::I (BERM CONSTR)

STRTIC LORD CRSE 1 T = 0.1

SEPTEMBER 09, _983 01:37:07

IRXIS=3 FLPHFI= 0.00 BETR= 0.00

DEFLECTION SCRLE FFtCTCI_ .1

Figure A3-2
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STATIC DEFLECTION ANALYSIS: GEAR #I (BEAM CONSTR)
STATIC LORD CASE 2 T= 0.3

SEPTEMBER 0g, 1983 01:37:07

IRXIS=3 RLPHR= 0.00 BETA=

DEFLECTION SCALE FRCTO_@.6

0.00 1
A

V
!

L

I

Figure A3-3
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STRTIC DEFLECTION

STRTIC LORD CRSE 3

SEPTEMBER 09, 1983 01:37:07

IRXIS=3 RLPHA= 0.00 BETR=

DEFLECTION SCRLE FQCTC_I.8

RNRLYS IS :

T = 0.5

0.00

GERR #1 (BERN CONSTR>

Y

-kt

/

i

t t _ --

I I I.

Ii

¢;

\i-
\

--_d

Figure A3-4
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STRTIC DEFLECTION RNRLYSIS: GERR #I (BERM CONSTR)

STRTIC L08D CRSE q T=0.8

SEPTEMBER 09, 1983 01:37:07

IRXIS=3 RLPHR= 0.00 BETR=

DEFLECTION SCBLE FB_.

0.00

#.-4...-#'-- "--"

{.-4--4-'-"

L

Figure A-5
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STRTIC DEFLECTION RNRLYSIS:

STRTIC LORD CRSE 1 T= O.i

SEPTEMBER 10, 1983 00:10:05

I RXI S=3 RLPHR= O. 00 BETPI=

DEFLECTI ON SCRLE FRCI-OI_ 3.8

0.00

GERR _i (RIM INCLUDED)

L

I

L_-- I

z

---4------

J

i

I,

%

I
I

Figure A3-6
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STRTIC DEFLECTION

STRTIC LORD CRSE 2

SEPTEMBER 10. 1503 00:10:05

I RXI S=3 RI_IM-I:I= 0.00 BETF:i=
DEF'LECTION S[]:ILE FRCT[]_I.6

RNRLYSIS:

T=0.3

0.00

GERR _ 1 (RIM INCLUDED)

I
A

V
I



STFITIC DEFLECTION
STFITIC LOFID CRSE 3

SEPTEMBER 10, 1983 00:10:05

IRXIS=3 RLPH8= 0.00 BETR=

DEFLECTION SCBLE FRCTCB_6?.B

RNFILYSIS :

T=0.5

0.00

GEFIR (RIM INCLUDED)

Y

Figure A3-8
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STRTIC DEFLECTION RNRLYSIS: GERR #I (RIM INCLUDED)

}TRTIC LORD CRSE _ T= 0.8

EPTEMBER 10. 1983 00:10:05

AXIS=3 ALPHA= 0.00 BETA=

_EFLECTION SCALE FACTO_.3

0.00

/%
V
I

Figure A3-9
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Modal Analysis

Timoshenko Beam Constraints

Rim Constraints
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MODAL ANALYSIS, PLANE STRAIN ELEMENT: GEAR #i

UNDEFORMED SHAPE

UNE lB. 1983 00:10:15"

IRXIS=3 RLPHR = 0.00 BETR= 0.00

Y

lJl,//11

III/IIII
"l l tll

/ ,\
"_./" /J / \_

-i

Figure A3-1@
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MODRL RNRLYSIS, PLRNE STRRIN ELEMENT: GERR #1
MODE 1 Freq.= .910i E5 (CPS)

UNE 10, 1983 19:32:39'

IRXIS=3 RI_PHR= 0.00 BETR=

DEFLECTI ON SCRLE FRCTOR= 8.2 _-2 ? 8-E

0 .00

/ i

Figure A3-11
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MODRL RNRLYSIS PLRNE STRRIN ELEMENT: GERR #1

MODE 2 Freq.= . 2159 E6 (CPS)

UNE 10, 1983 19:32:39'

!R×]S=3 RLPHR= 0.0fl BETR=
DEFLECTION SCRLE FRCTOR= 0.3099_E

0 .O0

/\
V
I

I

Figure A3-12
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MODRL RNRLYSIS, PLFtNE
MODE 3 Freq.= .2289

UNE 10, 1983 19:32:39'

IP',<[S-=3 RLPHR= 0.0n BE1-R=

DEFLECTION SCRLE F-RCTOR= 0.2_756-E

n .00

STRFIIN

E6 (CPS)

ELEHENT: GERR

, y

Figure A3-13
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MODRL RNRLYSIS. PLRNE STRRIN ELEMENT: GERR #i

MODE _ Freq.= .4218 E6 (CPS)

LINE 10. 1983 19:32:39'

IRXIS=3 IRLPH_=- 0.00 BE'[FI=

DEFLECT I ON SCALE FACTOR= 0.21 _# _

0.00

\

Figure A3-14
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MODRL RNRLYSIS, PLRNE STRRIN ELEMENT: GERR :_1

MODE 5 Freq.= .4794 R.6 (CPS)

UNE I0, 1983 t9:32:39'
[RX!S=3 ALPHR= 0.00 BETA=

DEFLECTION SCRLE FRCTOR= 0.2976_E

0.00

Y

\

Figure A3-15
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MODRL RNRLYSIS, PLRNE STRRIN ELEMENT: GERR #1

MODE 1 Freq.= . 6545 E5 (CPS)

UNE 16, 1983 00:10:15'

IRXIS=3 RLPHR = 0.00 BETR=
DEFLECTION SCRLE FRCTOR= 0.2756_E

0.00

Y

Figure A3-16
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MODAL ANALYSIS PLANE STRAIN ELEMENT: GEAR _1

MODE 2 Freq.= .li46 E61 (CPS)

LINE 16, 1983 00:I0:15'

IAXIS=3 ALPHA= 0.O0 BETA=

DEFLECTION SCALE FACTOR= O.5q125-E

0 .O0

/

Figure A3-17
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HODRL RNRLYSIS, PLRNE STRFIIN ELEMENT: GEFIR :_1

MODE 3 Freq.= .15i7 E6 (CPS)

UNE 16, 1983 00:I0:15'

InXIS=3 RLPHR= 0,00 BETR=

DEFLECTION SCRLE FRCTOR= 0._2_?{E

0 .O0

l\ Y

Figure A3-18
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MODRL RNRLYSIS, PLRNE STRRIN ELEMENT: GERR :_1

MODE _ Freq.= .2034 E6 (CPS)

UNE 16, 1883 00:10:15'

IRXIS=3 RLPHR= O.00 BETR=
DEFLECTION SCRLE FRCTOR= 0._2G?_E

0.00

Y

Figure A3-19
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MODAL ANALYSIS PLANE STRAIN

MODE 5 Freq. = .2319 E6 (CPS)

UNE 16, 1983 00:10:15'

IRXIS=3 ALPHA= 0.00 BETA=

DEFLECTION SCALE FACTOR= 0.5253eE

0.0 0

\

ELEMENT : GEAR

Y

Figure A3-20
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Dynamic Response

Gear Tooth Profile Deflections
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In the modal response analysis, modal superposition is

used to sum the effects of all the included mode shapes pro-

ducing the desired response. The more modes included, the more

accurate the analysis. However, there is a practical limit to

the number of modes used dictated by the type of loading used

(impact, constant, sinusoidal, etc.) and of course- com-

putational efficiency. As previously mentioned, the first ten

modes are used for this analysis.

To better comprehend the dynamic deflection phenomena, the

deflected state of the tooth profile, subject to the impact

loading case, is plotted for different load positions with

V*=0.01. Figure A3-21 shows the underformed shape and Figures

A3-22 through A3-25 are the various deformed shapes. From the

figure(s), one can see those modes whichcontribute noticeably

to the overall deflection of the tooth. It is apparent that

only the first three or four have a major effect (see Figure

A3-19, T=0.5). Thus the problem of local deformation encoun-

tered in the static analysis is not apparent here.
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= o3

T=0.5

T=0.8

DYNAMIC DEFLECTIONS OF GEAR TOOTH: UNDEFORMED SHAPE

Figure A3-21
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V_=0.01 T=0.1

DYNAMIC DEFLECTIONS OF GEAR TOOTH WITH MOVING LOADS

Figure A3-22

185



V*=O,O1 T=O.,3

DYNAMIC DEFLECTIONS OF GEAR TOOTH WITH MOVING LOADS

Figure A3-23
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V*=O.01 T:O.5

DYNAMIC DEFLECTIONS OF GEAR TOOTH WITH MOVING LOADS

Figure A3-24
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V*=O.01 T=0.8

DYNAMIC DEFLECTIONS OF GEAR TOOTH WITH MOVING LOADS

Figure A3-25
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APPENDIX 5

Use of Natural Modes in Equation

of Motion for Cantilever Beams

i) Constant of Integration

2) Evaluation of I2PHII AND I2PHI2

3) Derivatives of the Mode Shape With Time
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i.) Constant of Integration

In order to simplify the solution of the equation of

motion (5-26), the constant of integration associated with the

mode shape of a cantilever beam is determined such that;

0 (_)d_ = i (A5-1)

Since the beams are identical and the integral is over the

length of the beam, the constant is the same for both beams.

The first natural mode of vibration for a uniform fixed-

free cantilever beam is;

(_) = C[(sinSL-sinhSL)(sinS_-sinhS_)

+ (cossL+coshSL) (cos 8_-cosh 8_)

(A5-2)

where;

Equation (A5-2) is simplified by rewriting with;

Sl = sin_L-sinh 8L

S2 = cosSL+coshSL

We then have;

4(_) = C[Slsinx-Slsinhx+S2cosx-S2coshx]

where x is used in place of the argument 8_.

(A5-3)
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Squaring equation (A5-3);

#2 (_) = C2[Sl2(sin2x+sinh2x-2sinxsinhx)

+ S22(cos2x+cosh2x-2cosxsinhx) (A5-4)

+2SlS2(sinx cosx-sinx coshx-cosx sinhx+sinhx coshx)]

We can then solve for the constant C with the following

substitution;

1 %
C =( L ) (A5-5)

_01 G(_)d_

where _ ( _ )=CG(_). Whenever the relation represented by

equation (A5-1) occurs in equations (5-26) it is replaced by i.

Throughout the remainder of equations of motion the constant of

integration C is represented by equation (A5-5). This relation

is evaluted using Simpson's Rule.

2.) Evaluation of I2PHII and I2PHI2

Using the arbitrary constant of integration, C, determined

in the previous section, the relationship;

L

I2PHII = I2PHI2 =f0 _2(_)d_
(A5-6)

can be evaluated. The integrand represents the second deriva-

tive of the mode shape with respect to the length variable, _ ,

quantity squared. The first derivative of the mode shape with

x again used in place of 8_;

d__ = Cp[Slcosx-S2coshx-S2sinx-S2sinhx]d_
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and the second derivative;

d2_ = C82[-Slsinx-Slsinhx-S2cosx-S2coshx]

Squaring this relation and simplifying yields the desired

result;

(d2#_2 = C284[Sl(sin2x+sinh2x+2sinx sinhx)

d_-_;+S22( cos2x+cosh2x+2cosx coshx) (A5-7)

+2SiS2(sinx cosx+sinx coshx+cosx sinhx+sinhx coshx)]

This relation is then used in equation (A5-6) which is eva-

luated using Simpson's Rule.

3.) Derivatives of the Mode Shape with Time

second derivatives of the mode shape result where the dependent

variable, _ , must be considered as a function of time. The

first derivative of the mode shape with respect to time is;

d_(_) CS_[Slcosx-Slc0shx-S2sinx-S2sinhx] (A5-8)dt-

where x is used in place of the argument _ and _ is the velo-

city of the moving load.

have;

dt 2

Taking the second derivative, we

= C[SI(-82%2(sinx+sinhx) _'_cosx-coshx))

- S2(82_2(cosx+cosh)

+8_ (sinx+sinhx)) ] (A5-9)

where _ is the acceleration of the moving load.

load with constant speed, _ is of course zero.

For a moving
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APPENDIX 6

Development and Solution of

Equations of Motion with

Inertial Terms Removed
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By eliminating the inertial terms from the first four

equations of (5-26), and using the undifferentiated form of the

constraint equation (5-18), a new set of equations for the

beam-mass system take the form;

[A]{X} = {B} (A6-1)

where;

[A] =

(MI+MBI) 0 0 0

0 (M2+MB2) 0 0

0 0 I2PHII 0

0 0 0 I2PHI2

0 0 -PHI1 -PHI2

1

-i

PHI1

PHI2

0

Xl X2

The initial conditions for this system are determined by

arbitrarily chosing three of the four unknowns composing the

constraint equation. Letting the beams assume 'static deflec-

tions at time equal to zero, and Xl equal to zero; the initial

conditions are;

ql(0) =
P'PHI1

I2PHI2

q2(0) =
_PHI2

I2PHI2

Xl(0) = 0.0

with;

2]3



X2(0) = Xl + qlPHII + q2PHI2

Solving for {X} in equation (A6-1) by inversion;

{X} = [A]-I{B}

gives the values of the unknowns in terms of Xl and X2. Using

these values for {X}={Xl X2 ql q2 I }T, the system is integrated

using a Runge-Kutta integration algorithm solving for Xl and

X2 and I. Then equations 3 and 4 of (A6-1) are used to solve for ql

and q2.

Tests were done for constant velocity moving loads of 1.0,

5.0, 10.0, 20.0 and 40.0 inches per second. Plots of X2-Xl,

qlPHII and q2PHI2 are included in Figures (A6-1) through

(A6-5). Comparing these to Figures (5-7) to (5-11) show that

even though only one vibrational mode is used, the results are

very nearly the same as those determined for the massless

beams.
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APPENDIX 7

Dynamic Response Algorithm

for Meshing Cantilever Beam

i. Massless Configuration

2. Inertia of Beam Included
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C******************************_****_**_**_*_

C THIS PROGRAM SOLVES THE EQUATION OF MOTION *

C DESCRIBING A PAIR OF MESHING CANTILEVER *

C BEAMS ATTACHED TO MOVEABLE FOUNDATAION *

C MASSES. THE SECOND ORDER DIFFERENTIAL *

C EQUATION: M(D2X/DT2) +KX = P IS WRITTEN *

C AS A FIRST ORDER DIFFEQ AND INTEGRATED *

C USING A 4TH ORDER "RUNGE-KUTTA" INTEGRA- *

C TION ROUTINE• *

************************************************

EXTERNAL FCT,OUTP

DIMENSION Y(4),DERY(4),PRMT(5),AUX(8,4)

REAL P,L,BA,VEL,MI,M2,MASS,INERT,KI,K2,STIFF,MOD,STIFFI

COMMON p,L,VEL,MASS,INERT,KI,K2,STIFF,MOD, ZETAI,ZETA2,TF,DENOM

WRITE(6,*) 'ENTER: APPLIED LOAD, BEAM LENGTH, BASE WIDTH'

READ(5,*) P,L, BA

WRITE(6,*) 'ENTER: VELOCITY,

READ(5,*) VEL,MI,M2

MOD=30.E6

INERT=(I./12.)*BA*BA**3

ZETAI=L/10.

ZETA2=9.*L/10.

KI=(3.*MOD*INERT)/(ZETAI**3)

K2=(3.*MOD*INERT)/(ZETA2**3)

STIFF=(KI*K2)/(KI+K2)

STIFFI=STIFF

WRITe,b, w) '_IED LOAD

WRITE(6,*) 'BEAM LENGTH

WRITE(6,*) 'BASE WIDTH

WRITE(6,*) 'MASS #i

WRITE(6,*) 'MASS #2

WRITE(6,*) 'VELOCITY

Y(1)=O.0

Y (2) =P/STIFF

DERY (i) =0.5

DERY (2) =0.5

PRMT (i) =0.0

PRMT (2) = (. 8*L)/VEL

PRMT (3 )=PRMT (2 )/5000•

WRITE (6, *) 'STARTING TIME :

WRITE(6,*) 'ENDING TIME:

WRITE (6, *) 'TIME INCREMENT :

PRMT (4) =0. 0001

NDIM=2

MASS= (MI*M2) / (MI+M2)
TIME=0.0

MASS#I, MASS#2'

: ,L

: ,BA

: ,MI

: ,M2

: ,VEL

', PRMT (i)

', PRMT (2)

', PRMT (3)

22]

CALL RKGS(PRMT,Y,DERY,NDIM, IHLF,FCT,OUTP,AUX)
********************************************************

SUBROUTINE FCT(T,Y,DERY)

DIMENSION Y (4), DERY(4)

REAL P,L,BA,VEL,MI,M2,MASS,INERT,KI,K2,STIFF,MOD

COMMON p,L,VEL,MASS,INERT,KI,K2,STIFF,MOD, ZETAI,ZETA2,TF,DENOM

ZETAI=(L/10.)+T*VEL

ZETA2=(9.*L/10.)-T*VEL

KI=(3.*MOD*INERT)/(ZETAI**3)

K2=(3.*MOD*INERT)/(ZETA2**39

STIFF= (El*K2) / (El+K2)

DERY(1)=(P-STIFF*Y(2))/MASS



DERY( 2) =Y(i)
DENOM=I.+(ZETAI**3/ZETA2**3)
RETURN
END

SUBROUTINEOUTP(T,Y,DERY,IHLF,NDIM,PRMT)
DIMENSIONY(4),DERY(4)
COMMONP,L,VEL,MASS,INERT,KI,K2,STIFF,MOD,ZETAI,ZETA2,TF,DENOM
DELTA2=Y(2)/DENOM
DELTAI=Y(2) -DELTA2
WRITE(15,*) T, Y(2) ,DELTA1, DELTA2
RETURN
END

C THE SUBROUTINE"RKGS" (RUNGE-KUTTA)IS INCLUDED
C IN THE NEXTPROGRAM
C
C
C
C
C
C PURPOSE
C TO SOLVEA SYSTEMOF FIRST ORDERORDINARYDIFFERENTIAL
C EQUATIONSWITH GIVEN INITIAL VALUES.
C
C USAGE
C CALL RKGS (PRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUX)
C PARAMETERSFCT AND OUTPREQUIREAN EXTERNALSTATEMENT.
C
C
C
C
C
C
C
C
C
C PRMT(1)- LOWERBOUNDOF THE INTERVAL (INPUT),
C PRMT(2)- UPPERBOUNDOF THE INTERVAL (INPUT),
100:>TERVAL (INPUT), RKGS 220
C PRMT(2)- UPPERBOUNDOF THE INTERVAL

RKG
RKG
RKG
RKG
RKG
RKG
RKG
RKG
RKG
RKG
RKG
RKG
RKG
RKG

DESCRIPTIONOF PARAMETERS
PRMT - AN INPUT AND OUTPUTVECTORWITH DIMENSIONGREATER

OR EQUALTO 5, WHICHSPECIFIES THE PARAMETERSOF
THE INTERVAL AND OF ACCURACYAND WHICHSERVESFOR
COMMUNICATIONBETWEENOUTPUTSUBROUTINE(FURNISHEDRKG
BY THE USER) AND SUBROUTINERKGS. EXCEPTPRMT(5) RKG
THE COMPONENTSARE NOT DESTROYEDBY SUBROUTINE RKG
RKGSAND THEY ARE RKG

RKG
RKG
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C THIS PROGRAM SOLVES A SYSTEM OF 5 LINEAR *

C DIFFERENTIAL EQUATIONS DESCRIBING THE *

C DYNAMIC RESPONSE OF TWO COUPLED CANTILEVER *

C BEAMS WITH A MOVING LOAD BETWEEN THEM. *

***********************************************

C

EXTERNAL FCT,OUTP

DIMENSION FUNC(10),Y(8),DERY(8),PRMT(5),AUX(8,8),A(5,5)

REAL MOD, INERT,MI,M2,MBI,MB2,SI,S2,OMEG,IPHII,IPHI2

REAL I2PHII,I2PHI2,LAMBDA,LENG

COMMON IPHII,IPHI2,BETA,CONST,SI,S2,MI,M2,MBI,MB2,VEL

$,LAMBDA,ZETAI,ZETA2,I2PHII,I2PHI2,LENG,PHII,PHI2,DZZ

WRITE(6,*) 'ENTER APPLIED LOAD(Ibs),AND SPEED OF MOVING LOAD'
READ(5,*) P,VEL

WRITE(6,*) 'ENTER BEAMLENGTH(in),AND BASE THICKNESS(in)'
READ(5,*) LENG,THICK

WRITE(6,*) 'ENTER MASSES: MI,M2, AND DENSITY OF BEAM(IbM/in3),

READ (5, *) MI,M2, DENS
MOD=30.E6

LC=0

INERT=(I./12.)*THICK**4

DENS=(DENS/386.4)*THICK**2

WRITE(6,*) 'APPLIED LOAD: ',P

WRITE(6,*) 'VELOCITY : ',VEL

WRITE(6,*) 'BEAM LENGTH : ',LENG

WRITE(6,*) 'THICKNESS : ',THICK

WRITE(6,*) 'MASS/UNIT : ',DENS
C

C****

C

C

C****

C

C

C****

C****

C

20

i0

ONE TERM OF THE NATURAL MODE SERIES IS USED ******

OMEG=(I.875**2)*(MOD*INERT/(DENS*LENG**4))**0.5

BETA=(((OMEG**2)*DENS)/(MOD*INERT))**0.25

WRITE(6,*) 'OMEGA=',OMEG,' BETA=',BETA

EVALUATE THE CONSTANT TERMS IN MODE EQUATION ******

X=BETA* LENG

SI=SIN (X) -SINH (X)

s2=cos (x)+COSH (X)
WRITE(6,*) 'Sl=',Sl,' $2=',$2

EVALUATE CONSTANT OF INTEGRATION OF MODE EQUATION ****

INTEGRATE USING SIMPSON'S RULE - i00 INCREMENTS*****

XINC=LENG/100.
ZETA=0.0

XFACT=0.0

DO i0 I=2,100,2

DO 20 J=l,3

ZETA=XINC* (I-2) +XINC* (J-l)
X=BETA*ZETA

FUNC (J)=SI*'2" (SIN (X) **2+SINH (X) **2-2. *SIN (X) *SINH (X))

$+$2 **2 * (COS (X) **2+COSH (X) **2-2. *COS (X) *COSH (X))

$+2. *SI*S2* (SIN (X) *COS (X) -SIN (X) *COSH (X) -COS (X) *SINH (X)

$+SINH(X)*COSH(X))
CONTINUE

XFACT=XFACT+ (XINC/3 •) * (FUNC (i) +4. *FUNC (2) +FUNC (3 ) )
CONTINUE
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C
C****
C

40

3O

C
C****
C

60

50

C

C
C****
C

CONST=-(I./(DENS*XFACT))**0.5

WRITE(6,*) 'CONST=',CONST

EVALUATE INTEGRAL OF MODE SHAPE: IPHII=IPHI2****

XINC=LENG/100.

ZETA=O.0

XFACT=0.O

DO 30 I=2,100,2

DO 40 J=l,3

ZETA=XINC*(I-2)+XINC*(J-I)

X=ZETA*BETA

FUNC (J) =(SI* (SIN(X) -SINH(X) )+$2" (COS (X)-COSH(X)) )

CONTINUE

XFACT=XFACT+(XINC/3.)*(FUNC(1)+4.*FUNC(2)+FUNC(3))

CONTINUE

IPHII=DENS*XFACT*CONST

IPHI2=IPHII

WRITE(6,*) 'IPHII=IPHI2=',IPHII

EVALUATE INTEGRAL OF (D2PHI/DZETA2)**2: I2PHI ****

XINC=LENG/100.

ZETA=0.0

XFACT=O.0

DO 50 I=2,100,2

DO 60 J=l,3

ZETA=XINC*(I-2)+XINC*(J-I)
X=ZETA*BETA

FUNC (J) = (SI*'2" (SIN (X) **2+SINH (X) **2

$+2. *SIN(X) *SINH(X) )+$2"'2" (COS (X) **2+COSH(X) **2

$+2. *COS (X) *COSH(X) )+2.*SI*$2" (SIN(X) *COS (X) +SIN(X) *COSH(X)

$+COS (X) *SINH (X) +COSH (X) *SINH (X)) )
CONTINUE

XFACT=XFACT+(XINC/3.)*(FUNC(1)+4.*FUNC(2)+FUNC(3))

CONTINUE

I2PHII=XFACT*MOD*INERT*CONST**2*BETA**4

I2PHI2=I2PHII

WRITE(6,*) 'I2PHII=I2PHI2=',I2PHII

MBI=DENS*LENG

MB2=MBI

ZETAI=LENG/10.

ZETA2=.9*LENG

XI=ZETAI*BETA

X2=ZETA2*BETA

PHII=CONST* (SI* (SIN (XI) -SINH (XI)) +$2" (COS (Xl) -COSH (XI)) )

PHI2=CONST*(SI*(SIN(X2)-SINH(X2))+S2*(COS(X2)-COSH(X2)))

WRITE(6,*) 'PHII=',PHII, ' PHI2=',PHI2
DZ=VEL

DZZ=0.O

DIPHII=CONST*BETA*DZ*(SI*(COS(XI)-COSH(XI))

$-$2" (SIN(Xl)+SINH(Xl)) )

DIPHI2=CONST*BETA*(-DZ)*(SI*(COS(X2)-COSH(X2))

$-S2*(SIN(X2)+SINH(X2)))

DEFINE THE INITIAL VALUES

Y(3)=P*PHII/I2PHII

OF THE DEPENDENT VARIABLES **
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Y (4) =P*PHI2/I2PHI2

Y(1)=o.o
Y (2) =Y(1) +PHII*Y (3) +PHI2*Y(4)

Y(7)=o.o
Y(8)=o.o
Y(5)=o.o
Y (6) =Y (5) +Y (3 ) *DIPHI I+Y (4) *DIPHI2

WRITE (6, *) 'Y(1)=' ,Y(1)

WRITE(6,*) 'Y(2)=',Y(2)

WRITE (6, *) 'Y(3)=',Y(3)

WRITE (6, *) 'Y(4)=',Y(4)

DO 55 I=l, 8

DERY (I) =i./8.

55 CONTINUE

PRMT (i) =0.0

PRMT (2) =. 8*LENS/(VEL)

PRMT (3) = (PRMT (2) -PRMT (i) )/i00.

PRMT (4) =0. 0001
NDIM=8

CALL RKGS (PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX)
*********************************************

SUBROUTINE FCT (T, Y, DERY)

DIMENSION Y(8),DERY(8),A(5,5),B(5)

REAL MOD, INERT, M1, M2, MBI, MB2, S 1, S 2, OMEG, I PHI 1, I PHI 2

REAL I2PHII, I2PHI2, LAMBDA, LENG

COMMON IPHI 1, IPHI2, BETA, CONST, S1, S 2, M1, M2, MBi, MB2, VEL

$, LAMBDA, ZETA1, ZETA2, I2PHII, I2PHI2, LENG, PHI1, PHI2, DZZ

ZETA1= (LENG/i0 •)+VEL*T

ZETA2-- ( •9*LENG) -VEL*T
X I=Z ETA1* BETA

X2=ZETA2*BETA

C

C**** EVALUATE MODE SHAPE EQUATIONS AT EACH LOAD POSITION ***

C

PHII=CONST* (SI* (SIN (Xl) -SINH (XI)) +$2" (COS (Xl) -COSH (XI)) )

PHI2=CONST* (SI* (SIN (X2) -SINH (X2)) +$2" (COS (X2) -COSH (X2) ) )
C

IF(LC.GT.10) GO TO 71

WRITE(6,*) '**********TIME=',T

C**** EVALUATE DERIVATIVES OF MODE SHAPE EQUATIONS ****
C

71 DZ=VEL

DZZ=0 •0

DIPHI I=CONST*BETA*DZ* (SI* (COS (Xl) -COSH (Xl))

$-$2" (SIN(X1)+SINH(Xl)) )

D1 PHI 2 =CONST* BETA* (-DZ )* (S 1* (C0S (X2 )-COSH (X2 ) )

$-$2" (SIN (X2) +SINH (X2)) )

D2PHI I=CONST*BETA* (SI* (-BETA*DZ**2*SIN (Xl) +DZZ*COS (Xl)

$-BETA*DZ**2*SINH (Xl) -DZZ*COSH (Xl)) -S2" (BETA*DZ**2*COS (Xl)

$+DZZ*SIN (Xl) +BETA*DZ**2*COSH (XI) +DZZ*SINH (Xl)) )

D2 PHI2=CONST*BETA* (SI* (-BETA*DZ**2 *SIN (X2) +DZZ*COS (X2)

$-BETA*DZ**2*SINH (X2) -DZZ*COSH (X2)) -S2" (BETA*DZ**2*COS (X2)

$+DZZ*SIN (X2) +BETA*DZ**2*COSH (X2) +DZZ*SINH (X2)) )

C

C****

C

DEFINE MATRIX COEFFICIENTS A[5,5] ****

A (1, i) =MI+MBI

A(2,1)=0.0
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A(3, I)=IPHII
A(4, i)=0.0
A(5, i)=-i.

A(I,2)=0.0

A (2,2 )=M2+MB2

A(3,2)=0.0

A(4,2)=-IPHI2

A(5,2)=I.0

A(I, 3) =IPHII

A(2,3)=0.0

A(3,3)=I.0

A(4,3)=0.0

A(5,3) =-PHI1

A(I,4)=0.0

A(2,4)=-IPHI2

A(3,4)=0.0

A(4,4)=I.0

A(5,4) =-PHI2

A(I,5)=I.0

A(2,5)=-i. 0

A(3,5)=PHIl

A(4,5)=PHI2

A(5,5)=0.0
C

C**** DEFINE RIGHT HAND SIDE B[5] *******
C

B(1)=-P
B(2) =P

B (3) =-I2PHII*Y (3)

B (4) =-I2PHI2*Y (4)

B(5) =D2PHII*Y (3) +D2PHI2*Y(4) +2.*DIPHII*Y(7) +2.*DIPHI2*Y (8)
IF(LC.GT.10) GO TO 1

DO 63 I=I,5

63 WRITE(6,*) A(I,I),A(I,2),A(I,3),A(I,4),A(I,5),B(I)
1 LC=LC+I

N=5

CALL SIMQ(A,B,N,KS)

IF(KS.EQ.I) WRITE(6,*) 'NO SOLUTION!!!!!!'

IF(LC.GT.10) GO TO 64

WRITE(6,*) 'BACK FROM SIMQ [B]'
DO 64 I=1,5

WRITE (6, *) B(I)
64 CONTINUE

DERY (i) =Y (5)

DERY (2)=Y (6)

DERY (3 )=Y (7 )

DERY (4) =Y (8)

DERY (5) =B (i)

DERY (6)=B(2)

DERY (7) =B (3)

DERY (8) =B (4)

LAMBDA=B (5 )

IF(LC.GT.10) GO TO 62

DO 61 I=i,8

')=' Y(I)61 WRITE (6, *) 'Y(',I, ,
62 RETURN

END
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SUBROUTINE OUTP(T,Y,DERY,IHLF,NDIM,PRMT)

DIMENSION Y(8) ,DERY(8),PRMT(5)

REAL MOD,INERT,MI,M2,MBI,MB2,SI,S2,OMEG,IPHII,IPHI2

REAL I2PHII,I2PHI2,LAMBDA,LENG

COMMON IPHII,IPHI2,BETA,CONST,Sl,S2,MI,M2,MBI,MB2,VEL

$,LAMBDA, ZETAI,ZETA2,I2PHII,I2PHI2,LENG,PHII,PHI2,DZZ

ZETAI=(LENG/10.)+VEL*T

ZETA2=(.9*LENG)-VEL*T
XI=ZETAI*BETA

X2=ZETA2*BETA

PHII=CONST* (SI* (SIN(Xl) -SINH (Xl)) +$2" (COS (XI) -COSH(Xl) ) )

PHI2=CONST* (SI* (SIN (X2) -SINH(X2) )+$2" (COS (X2) -COSH(X2) ) )

WRITE(15,*) T,Y(2)-Y(1) ,Y(3)*PHII,Y(4)*PHI2

WRITE(6,*) 'ACCEL=',DZZ
RETURN

END

************************************************

C

C

C

C

C

C

C

C

C

C

C

C

C
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C
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SUBROUTINE SIMQ

PURPOSE

OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS,
AX=B

USAGE

CALL SIMQ(A,B,N, KS )

DESCRIPTION OF PARAMETERS

A - MATRIX OF COEFFICIENTS STORED COLUMNWISE. THESE ARE

DESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS
N BY N.

B - VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE

REPLACED BY FINAL SOLUTION VALUES, VECTOR X.

N - NUMBER OF EQUATIONS AND VARIABLES. N MUST BE .GT. ONE.
KS - OUTPUT DIGIT

0 FOR A NORMAL SOLUTION

1 FOR A SINGULAR SET OF EQUATIONS

REMARKS

MATRIX A MUST BE GENERAL.

IF MATRIX IS SINGULAR , SOLUTION VALUES ARE MEANINGLESS.

AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX

INVERSION (MINV) AND MATRIX PRODUCT (GMPRD).

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD

METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL

DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGING

ROWS WHEN NECESSARY TO AVOID DIVISION BY ZERO OR SMALL

ELEMENTS.

THE FORWARD SOLUTION TO OBTAIN VARIABLE N IS DONE IN

N STAGES. THE BACK SOLUTION FOR THE OTHER VARIABLES IS

CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION

VALUES ARE DEVELOPED IN VECTOR B, WITH VARIABLE 1 IN B(1),
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C VARIABLE 2 IN B(2), ........ , VARIABLE N IN B(N).

C IF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0,
C THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO i. THIS

C TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT.

C

C ee.aeooQoeQeooeoeoooooeoeoeeeoeooaoIQee.oooooeooeeooeooeOeoOeooolo

C

SUBROUTINE SIMQ(A,B,N,KS)

DIMENSION A(1),B(1)
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

FORWARD SOLUTION

TOL=0.0

KS=0

JJ=-N

DO 65 J=I,N
JY=J+I

JJ=JJ+N+I

BIGA=0

IT=JJ-J

DO 30 I=J,N

SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN

IJ=IT+I

IF(ASS(BIGA)-ABS(A(IJ))) 20,30,30

20 BIGA=A (IJ)
IMAX=I

30 CONTINUE

TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)

IF(ABS(BIGA)-TOL) 35,35,40

35 KS=I

RETURN

INTERCHANGE ROWS IF NECESSARY

40 II=J+N* (J-2)
IT=IMAX-J

DO 50 K=J,N

I l=I I+N

I2=II+IT

SAVE=A (I 1 )

A(II) =A(I2)

a (12 )=SAVE

DIVIDE EQUATION BY LEADING COEFFICIENT

50 A(II) =A(II)/BIGA

SAVE=B (IMAX)

B (IMAX) =B (J)

B (J) =SAVE/BIGA

ELIMINATE NEXT VARIABLE

IF(J-N) 55,70,55

55 IQS=N*(J-I)

DO 65 IX=JY,N
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C

C

C

IXJ=IQS+IX

IT=J-IX

DO 60 JX=JY,N

IXJX=N* (JX-l) +IX
JJX=IXJX+IT

60 A(IXJX) =A (IXJX) - (a(IXJ) *A (JJX))

65 B(IX)=B(IX)-(B(J)*A(IXJ) )

BACK SOLUTION

70 NY=N-I

IT=N*N

DO 80 J=I,NY
IA=IT-J

IB=N-J

IC=N

DO 80 K=I,J

B (IB) =B (IB) -A (IA) *B (IC)
IA=IA-N

80 IC=IC-I

RETURN

END

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE RKGS

PURPOSE

TO SOLVE A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL
EQUATIONS WITH GIVEN INITIAL VALUES.

USAGE

CALL RKGS (PRMT,Y,DERY,NDIM, IHLF,FCT,OUTP,AUX)
PARAMETERS FCT AND OUTP REQUIRE AN EXTERNAL STATEMENT.

DESCRIPTION OF PARAMETERS

PRMT - AN INPUT AND OUTPUT VECTOR WITH DIMENSION GREATER

OR EQUAL TO 5, WHICH SPECIFIES THE PARAMETERS OF

THE INTERVAL AND OF ACCURACY AND WHICH SERVES FOR

COMMUNICATION BETWEEN OUTPUT SUBROUTINE (FURNISHED

BY THE USER) AND SUBROUTINE RKGS. EXCEPT PRMT(5)
THE COMPONENTS ARE NOT DESTROYED BY SUBROUTINE
RKGS AND THEY ARE

PRMT(1)- LOWER BOUND OF THE INTERVAL (INPUT),

PRMT(2)- UPPER BOUND OF THE INTERVAL (INPUT),
PRMT(3)- INITIAL INCREMENT OF THE INDEPENDENT VARIABLE

(INPUT),

PRMT(4)- UPPER ERROR BOUND (INPUT). IF ABSOLUTE ERROR IS

GREATER THAN PRMT(4), INCREMENT GETS HALVED.

IF INCREMENT IS LESS THAN PRMT(3) AND ABSOLUTE

ERROR LESS THAN PRMT(4)/50, INCREMENT GETS DOUBLED.

THE USER MAY CHANGE PRMT(4) BY MEANS OF HIS
OUTPUT SUBROUTINE.

PRMT(5)- NO INPUT PARAMETER. SUBROUTINE RKGS INITIALIZES

PRMT(5)=0. IF THE USER WANTS TO TERMINATE

SUBROUTINE RKGS AT ANY OUTPUT POINT, HE HAS TO

CHANGE PRMT(5) TO NON-ZERO BY MEANS OF SUBROUTINE
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Y

DERY

NDIM

IHLF

FCT

OUTP

AUX

OUTP. FURTHERCOMPONENTSOF VECTORPRMTARE
FEASIBLE IF ITS DIMENSIONIS DEFINEDGREATER
THAN 5. HOWEVERSUBROUTINERKGSDOESNOT REQUIRE
AND CHANGETHEM. NEVERTHELESSTHEY MAY BE USEFUL
FORHANDINGRESULTVALUESTO THE MAIN PROGRAM
(CALLING RKGS) WHICHARE OBTAINEDBY SPECIAL
MANIPULATIONSWITH OUTPUTDATA IN SUBROUTINEOUTP.

- INPUT VECTOROF INITIAL VALUES. (DESTROYED)
LATERONY IS THE RESULTINGVECTOROF DEPENDENT
VARIABLES COMPUTEDAT INTERMEDIATEPOINTS X.

- INPUT VECTOROF ERRORWEIGHTS. (DESTROYED)
THE SUMOF ITS COMPONENTSMUSTBE EQUALTO i.
LATERONDERYIS THE VECTOROF DERIVATIVES, WHICH
BELONGTO FUNCTIONVALUESY AT A POINT X.

-AN INPUT VALUE, WHICHSPECIFIES THE NUMBEROF
EQUATIONSIN THE SYSTEM.

- AN OUTPUTVALUE, WHICHSPECIFIES THE NUMBEROF
BISECTIONS OF THE INITIAL INCREMENT.IF IHLF GETS
GREATERTHAN i0, SUBROUTINERKGSRETURNSWITH
ERRORMESSAGEIHLF=II INTO MAIN PROGRAM.ERROR
MESSAGEIHLF=I2 OR IHLF=I3 APPEARSIN CASE
PRMT(3)=0 OR IN CASE SIGN(PRMT(3)).NE.SIGN(PRMT(2)-
PRMT(1)) RESPECTIVELY.

- THE NAMEOF AN EXTERNALSUBROUTINEUSED. THIS
SUBROUTINECOMPUTESTHE RIGHT HANDSIDES DERYOF
THE SYSTEMTO GIVEN VALUESX AND Y. ITS PARAMETER
LIST MUSTBE X,Y,DERY. SUBROUTINEFCT SHOULD
NOT DESTROYX AND Y.

- THE NAMEOF AN EXTERNALOUTPUTSUBROUTINEUSED.
ITS PARAMETERLIST MUSTBE X,Y,DERY,IHLF,NDIM,PRMT.
NONEOF THESEPARAMETERS(EXCEPT, IF NECESSARY,
PRMT(4),PRMT(5),...) SHOULDBE CHANGEDBY
SUBROUTINEOUTP. IF PRMT(5) IS CHANGEDTO NON-ZERO,
SUBROUTINERKGSIS TERMINATED.

- AN AUXILIARY STORAGEARRAYWITH 8 ROWSAND NDIM
COLUMNS.

REMARKS
THE PROCEDURETERMINATESAND RETURNSTO CALLING PROGRAM,IF
(I) MORETHAN i0 BISECTIONS OF THE INITIAL INCREMENTARE

NECESSARYTO GET SATISFACTORYACCURACY(ERRORMESSAGE
IHLF=II),

(2) INITIAL INCREMENTIS EQUALTO 0 OR HAS WRONGSIGN
(ERRORMESSAGESIHLF=I2 OR IHLF=I3),

(3) THE WHOLEINTEGRATIONINTERVAL IS WORKEDTHROUGH,
(4) SUBROUTINEOUTPHAS CHANGEDPRMT(5) TO NON-ZERO.

SUBROUTINESAND FUNCTIONSUBPROGRAMSREQUIRED
THE EXTERNALSUBROUTINESFCT(X,Y,DERY) AND
OUTP(X,Y,DERY,IHLF,NDIM,PRMT) MUSTBE FURNISHEDBY THE USER.

METHOD
EVALUATIONIS DONEBY MEANSOF FOURTHORDERRUNGE-KUTTA
FORMULAEIN THE MODIFICATION DUETO GILL. ACCURACYIS
TESTEDCOMPARINGTHE RESULTSOF THE PROCEDUREWITH SINGLE
ANDDOUBLEINCREMENT.
SUBROUTINERKGSAUTOMATICALLYADJUSTSTHE INCREMENTDURING
THE WHOLECOMPUTATIONBY HALVING OR DOUBLING. IF MORETHAN
i0 BISECTIONSOF THE INCREMENTARE NECESSARYTO GET
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SATISFACTORY ACCURACY, THE SUBROUTINE RETURNS WITH

ERROR MESSAGE IHLF=II INTO MAIN PROGRAM.

TO GET FULL FLEXIBILITY IN OUTPUT, AN OUTPUT SUBROUTINE

MUST BE FURNISHED BY THE USER.

FOR REFERENCE, SEE

RALSTON/WILF, MATHEMATICAL METHODS FOR DIGITAL COMPUTERS,

WILEY, NEW YORK/LONDON, 1960, PP.110-120.

oooo.eol,eeeoee.ooeeeooeeoeeoeoeee.ooooe,ooooooeeoeeooeeoooe"

SUBROUTINE RKGS (PRMT,Y,DERY,NDIM, IHLF,FCT,OUTP,AUX)

2

DIMENSION Y(1),DERY(1),AUX(8,1),A(4),B(4),C(4),PRMT(1)

DO 1 I=I,NDIM

AUX(8, I) =. 06666667*DERY (I)

X=PRMT (i)

XEND=PRMT (2 )

H=PRMT (3 )

PRMT (5 )=0.

CALL FCT (X, Y, DERY)

ERROR TEST

IF(H* (XEND-X)) 38,37,2

PREPARATIONS FOR RUNGE-KUTTA METHOD

A(1)=.5

A(2) =. 29-28932

A(3)=I. 707107

A(4)=. 1666667

B(1) =2.

B(2)=I.

B(3) =i.

B(4)=2.

c(1)=.5
C(2)=.2928932

C(3)=I. 707107

c(4)=.s

PREPARATIONS OF FIRST RUNGE-KUTTA STEP

DO 3 I=I,NDIM

AUX (i, I)=Y(I)

AUX(2,I)=DERY(I)

AUX(3,I)=0.

AUX(6,I)=O.
IREC=O

H=H+H

IHLF=-I

ISTEP=0

IEND=0

START OF A RUNGE-KUTTA STEP

4 IF((X+H-XEND)*H)7,6,5
5 H=XEND-X

6 IEND=I

RECORDING OF INITIAL VALUES OF THIS

7 CALL OUTP(X,Y,DERY,IREC,NDIM,PRMT)

23]
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C

IF (PRMT (5)) 40,8,40
8 ITEST=0

9 ISTEP=ISTEP+I

START OF INNERMOST RUNGE-KUTTA LOOP

J=l

i0 AJ=A (J)

BJ=B (J)

CJ=C (J)

DO ii I=I,NDIM

RI=H*DERY (I )

R2=AJ* (RI-BJ*AUX (6, I) )

Y (I)=Y (I) +R2
R2--R2+R2+R2

ii AUX(6, I) =AUX(6, I) +R2-CJ*RI

IF (J-4) 12,15,15
12 J=J+l

IF (J-3) 13,14,13

13 X=X+. 5*H

14 CALL FCT(X,Y,DERY)

GOTO i0
END OF INNERMOST RUNGE-KUTTA LOOP

TEST OF ACCURACY

15 IF (ITEST) 16,16,20

IN CASE ITEST=0 THERE IS NO POSSIBILITY FOR TESTING OF ACCURACY

16 DO 17 I=I,NDIM

17 AUX(4, I) =Y (I)
ITEST=I

ISTEP=ISTEP+ISTEP-2

18 IHLF=IHLF+ 1

X--X-H

H=. 5*H

DO 19 I=I,NDIM

Y (I)=AUX(I, I)

DERY (I )=AUX (2, I )

19 AUX (6, I) =AUX (3, I)
GOT0 9

IN CASE ITEST=I TESTING OF ACCURACY IS POSSIBLE

20 IMOD=ISTEP/2

IF (ISTEP-IMOD-IMOD) 21,23,21

21 CALL FCT(X,Y,DERY)

DO 22 I=I,NDIM

AUX (5, I) =Y (I)

22 AUX(7, I)=DERY(I)
GOTO 9

COMPUTATION OF TEST VALUE DELT

23 DELT=0.

DO 24 I=I,NDIM

24 DELT=DELT+AUX (8, I) *ABS (AUX (4, I ) -Y (I ))

IF (DELT-PRMT (4)) 28,28,25

ERROR IS TOO GREAT

25 IF (IHLF-10) 26,36,36
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C

C

C

C

C

C

26

27

DO 27 I=I,NDIM

AUX (4, I) =AUX (5, I)
ISTEP=ISTEP+ISTEP-4

X=X-H

IEND=0

GOTO 18

RESULT VALUES ARE GOOD

28 CALL FCT(X,Y,DERY)

DO 29 I=I,NDIM

AUX(I, I) =Y (I)

AUX (2, I) =DERY (I)

AUX(3,I)=AUX(6,I)

Y(I) =AUX(5,5)

29 DERY (I) =AUX(7, I)

CALL OUTP(X-H,Y,DERY,IHLF,NDIM,P_T)

IF(P_T(5))40,30,40

30 DO 31 I=I,NDIM

Y(I)=AUX(I,I)

31 DERY (I) =AUX (2, I)
IREC=IHLF

IF(IEND) 32,32,39

INCREMENT GETS DOUBLED

32 IHLF=IHLF-I

H=H+H

TO STOP AT INPUT DELT:

IF(IHLF) 4,33,33

33 IMOD=ISTEP/2

IF(ISTEP-IMOD-IMOD) 4,34,4

34 IF(DELT-.02*P_T(4))35,35,4
35 IHLF=IHLF-I

ISTEP=ISTEP/2
H=H+H

GOTO 4

IF (IHLF) 4,33,33

RETURNS TO CALLING PROGRAM

36 IHLF=II

CALL FCT(X,Y,DERY)
GOTO 39

37 IHLF=I2

GOTO 39

38 IHLF=I3

39 CALL OUTP(X,Y,DERY,IHLF,NDIM, P_T)
40 RETURN

END

wUS GO_NM_ P_G O_: 1 9 8 7-7 % 8q 2 0/6 O 4 0 7
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